• Title/Summary/Keyword: Fuzzy ART

Search Result 151, Processing Time 0.024 seconds

An Enhanced Fuzzy ART Algorithm for Effective Image Recognition (효과적인 영상 인식을 위한 개선된 퍼지 ART 알고리즘)

  • Kim, Kwang-Baek;Park, Choong-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.262-267
    • /
    • 2007
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 학습률의 설정에 따라 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 학습률로 설정하여 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 영문 명함에서 추출한 영문자들을 대상으로 실험한 결과, 기존의 ART1과 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

  • PDF

Memory Management Model Using Combined ART and Fuzzy Logic (ART와 퍼지를 이용한 메모리 관리 모델)

  • Kim, Joo-Hoon;Kim, Seong-Joo;Choi, Woo-Kyung;Kim, Jong-Soo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.920-926
    • /
    • 2004
  • The human being receives a new information from outside and the information shows gradual oblivion with time. But the information remains in memory and isn't forgotten for a long time if the information is read several times over. For example, we assume that we memorize a telephone number when we listen and never remind we may forget it soon, but we commit to memory long time by repeating. If the human being received new information with strong stimulus, it could remain in memory without recalling repeatedly. The moments of almost losing one's life in an accident or getting a stroke of luck are rarely forgiven. The human being can keep memory for a long time in spite of the limit of memory for the mechanism mentioned above. In this paper, we propose a model to explain the mechanism mentioned above using a neural network and fuzzy.

Recognition of the Passport by Using Fuzzy Binarization and Enhanced Fuzzy Neural Networks

  • Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.603-607
    • /
    • 2003
  • The judgment of forged passports plays an important role in the immigration control system, for which the automatic and accurate processing is required because of the rapid increase of travelers. So, as the preprocessing phase for the judgment of forged passports, this paper proposed the novel method for the recognition of passport based on the fuzzy binarization and the fuzzy RBF neural network newly proposed. first, for the extraction of individual codes being recognized, the paper extracts code sequence blocks including individual codes by applying the Sobel masking, the horizontal smearing and the contour tracking algorithm in turn to the passport image, binarizes the extracted blocks by using the fuzzy binarization based on the membership function of trapezoid type, and, as the last step, recovers and extracts individual codes from the binarized areas by applying the CDM masking and the vertical smearing. Next, the paper proposed the enhanced fuzzy RBF neural network that adapts the enhanced fuzzy ART network to the middle layer and applied to the recognition of individual codes. The results of the experiment for performance evaluation on the real passport images showed that the proposed method in the paper has the improved performance in the recognition of passport.

  • PDF

Real-Time Intrusion Detection using Fuzzy Adaptive Resonance Theory (Fuzzy ART를 이용한 실시간 침입탐지)

  • 한광택;김형천;고재영;이철원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.640-642
    • /
    • 2001
  • 침입 탐지 시스템의 초점이 호스트와 운영체제 탐지에서 네트워크 탐지로 옮겨가고 있고 단순만 오용 탐지 기법에서 이를 개선한 지능적인 비정상 행위 탐지 기법에 관한 연구들이 진행되고 있다. 이러한 연구들 중에는 네트워크 프로토콜의 트래픽 특성을 이용하여 비표준 포트의 사용이나 표준 포트에 대한 비표준 방법에 의한 침입을 탐지하고자 하는 노력도 있다. 본 연구에서는 실시간으로 패턴 매칭이 가능하고, 적응력이 뛰어난 신경망 알고리즘을 이용하여 네트워크 서비스들에 대한 트래픽을 수집, 특성에 따라 분석.클러스터링하고 그 결과를 바탕으로 보다 향상된 침입 탐지가 가능한 시스템을 제안한다.

  • PDF

Change Detection in Bitemporal Remote Sensing Images by using Feature Fusion and Fuzzy C-Means

  • Wang, Xin;Huang, Jing;Chu, Yanli;Shi, Aiye;Xu, Lizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1714-1729
    • /
    • 2018
  • Change detection of remote sensing images is a profound challenge in the field of remote sensing image analysis. This paper proposes a novel change detection method for bitemporal remote sensing images based on feature fusion and fuzzy c-means (FCM). Different from the state-of-the-art methods that mainly utilize a single image feature for difference image construction, the proposed method investigates the fusion of multiple image features for the task. The subsequent problem is regarded as the difference image classification problem, where a modified fuzzy c-means approach is proposed to analyze the difference image. The proposed method has been validated on real bitemporal remote sensing data sets. Experimental results confirmed the effectiveness of the proposed method.

Human′s Memory Management Model Using Combined ART and Fuzzy Logic (ART와 퍼지를 혼합한 인간의 기억 모델)

  • 김주훈;김성주;연정흠;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.289-292
    • /
    • 2004
  • 여러 분야에서 다양한 목적으로 인간처럼 생각하는 시스템을 구현하고자 하는 연구가 이루어지고 있다. 인간의 뇌에서 기억을 담당하는 부분은 시각, 청각, 촉각 등의 감각 정보를 이용하여 새로 들어온 정보가 이미 기억된 정보와 같은가를 비교하여 기존 기억에 적용시키거나 새로운 정보로 기억시킨다. 기존의 모델은 ART를 사용하여 그것을 구현하고 반복 학습되지 않는 정보는 잊혀져 버리는 것과 강한 자극과 함께 입력된 정보는 반복 학습되지 않아도 잊혀지지 않는 것이었다. 그 모델을 이용할 경우 모든 감각에 대한 정보들이 전부 한 번에 처리되었기 때문에 감각별로 정보를 차등적으로 조절하여 처리하기가 곤란하였다. 본 논문에서는 이 문제를 개선하기 위해 기존의 ART를 이용한 모델에서 감각 정보를 비교하는 과정을 퍼지 규칙을 도입한 방법으로 교체하고자 한다. 우선 입력받는 감각 정보의 여러 값들을 감각 별로 그룹화 한 후 그룹별로 퍼지 규칙을 이용하여 비교한다. 기억된 정보들을 퍼지 규칙으로 하고 입력된 정보를 이용하여 각각의 규칙에 대한 결과를 낸다. 이 모델에서는 퍼지를 사용하여 기억된 정보에 대한 이해가 쉽고, 기억된 정보를 이용할 때 규칙을 조절하여 적용하는 것으로 상황에 따라 필요한 감각 정보를 알맞게 적용할 수 있을 것이다.

  • PDF

Extraction of lipoma Using ART2 from Ultrasonic Images (초음파 영상에서 ART2를 이용한 지방종 추출)

  • Lim, Hyo-Bin;Kim, Kwang Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.507-509
    • /
    • 2015
  • 본 논문에서는 지방종 초음파 영상에서 지방종을 자동적으로 추출하는 방법을 제안한다. 제안된 방법은 초음파 영상에 Monotone Cubic Spline 보간법을 이용하여 ROI영역을 추출한다. 추출된 ROI 영역에 Fuzzy Stretching 기법을 적용하여 명암 대비를 강조한 후, ART2 알고리즘과 8방향 윤곽선 추적 알고리즘을 적용하여 잡음을 제거한 후에 지방종의 후보 영역을 추출한다. 추출된 지방종의 후보 영역 중에서 형태학적으로 타원 형태를 띠거나 가장 큰 후보 영역의 정보를 이용하여 Labeling 기법을 적용하여 최종적으로 지방종 영역을 추출한다. 제안된 방법을 지방종 초음파 영상에 실험한 결과, 지방종 영역이 비교적 정확히 추출되는 것을 실험을 통하여 확인하였다.

  • PDF

Psychology Analysis Based on Color Information Using ART2 Algorithm and Fuzzy Inference Method (ART2 알고리즘과 퍼지 추론 기법을 이용한 색채 정보 기반 심리 분석)

  • Lee, Dae-Woo;Kim, Ji-Yeon;Kim, Kwang Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.343-345
    • /
    • 2016
  • 본 논문에서는 아동이 그린 그림에 대해 ART2 알고리즘을 적용하여 색채 정보를 군집화하고, 군집화 된 색채 정보의 중심 벡터 값들을 퍼지화 한다. 퍼지화 된 색채 정보의 소속도를 퍼지 추론 규칙에 적용한 후에 비퍼지화 한다. 비퍼지화 된 결과를 적용하여 아동의 심리 상태를 분석한다. 제안된 방법을 실험하여 알슐러와 해트윅(Alschuler and Hattwick)의 색채에 따른 심리 상태와 비교한 결과, 제안된 심리 분석 방법이 알슐러와 해트윅의 색채에 따른 심리 상태 분석 결과와 거의 일치하는 것을 확인하였다.

  • PDF

Enhanced RBF Network by Using Auto- Turning Method of Learning Rate, Momentum and ART2

  • Kim, Kwang-baek;Moon, Jung-wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.84-87
    • /
    • 2003
  • This paper proposes the enhanced REF network, which arbitrates learning rate and momentum dynamically by using the fuzzy system, to arbitrate the connected weight effectively between the middle layer of REF network and the output layer of REF network. ART2 is applied to as the learning structure between the input layer and the middle layer and the proposed auto-turning method of arbitrating the learning rate as the method of arbitrating the connected weight between the middle layer and the output layer. The enhancement of proposed method in terms of learning speed and convergence is verified as a result of comparing it with the conventional delta-bar-delta algorithm and the REF network on the basis of the ART2 to evaluate the efficiency of learning of the proposed method.

  • PDF

Hybrid Fuzzy Association Structure for Robust Pet Dog Disease Information System

  • Kim, Kwang Baek;Song, Doo Heon;Jun Park, Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.234-240
    • /
    • 2021
  • As the number of pet dog-related businesses is rising rapidly, there is an increasing need for reliable pet dog health information systems for casual pet owners, especially those caring for older dogs. Our goal is to implement a mobile pre-diagnosis system that can provide a first-hand pre-diagnosis and an appropriate coping strategy when the pet owner observes abnormal symptoms. Our previous attempt, which is based on the fuzzy C-means family in inference, performs well when only relevant symptoms are provided for the query, but this assumption is not realistic. Thus, in this paper, we propose a hybrid inference structure that combines fuzzy association memory and a double-layered fuzzy C-means algorithm to infer the probable disease with robustness, even when noisy symptoms are present in the query provided by the user. In the experiment, it is verified that our proposed system is more robust when noisy (irrelevant) input symptoms are provided and the inferred results (probable diseases) are more cohesive than those generated by the single-phase fuzzy C-means inference engine.