• 제목/요약/키워드: Future climate projection

검색결과 100건 처리시간 0.026초

지역 기후 앙상블 예측을 활용한 한반도 풍력 에너지의 시·공간적 변동성 연구 (Variability of Wind Energy in Korea Using Regional Climate Model Ensemble Projection)

  • 김유미;김연희;김나윤;임윤진;김백조
    • 대기
    • /
    • 제26권3호
    • /
    • pp.373-386
    • /
    • 2016
  • The future variability of Wind Energy Density (WED) over the Korean Peninsula under RCP climate change scenario is projected using ensemble analysis. As for the projection of the future WED, changes between the historical period (1981~2005) and the future projection (2021~2050) are examined by analyzing annual and seasonal mean, and Coefficient of Variation (CV) of WED. The annual mean of WED in the future is expected to decrease compared to the past ones in RCP 4.5 and RCP 8.5 respectively. However, the CV is expected to increase in RCP 8.5. WEDs in spring and summer are expected to increase in both scenarios RCP 4.5 and RCP 8.5. In particular, it is predicted that the variation of CV for WED in winter is larger than other seasons. The time series of WED for three major wind farms in Korea exhibit a decrease trend over the future period (2021~2050) in Gochang for autumn, in Daegwanryeong for spring, and in Jeju for autumn. Through analyses of the relationship between changes in wind energy and pressure gradients, the fact that changes in pressure gradients would affect changes in WED is identified. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.

기후변화에 따른 우리나라 미선나무의 분포변화 예측 (Projection of climate change effects on the potential distribution of Abeliophyllum distichum in Korea)

  • 이상혁;최재용;이유미
    • 농업과학연구
    • /
    • 제38권2호
    • /
    • pp.219-225
    • /
    • 2011
  • Changes in biota, species distribution range shift and catastrophic climate influence due to recent global warming have been observed during the last century. Since global warming affects various sectors, such as agriculture and vegetation, it is important to predict more accurate impact of future climate change. The purpose of this study is to examine the observed distribution of Abeliophyllum distichum in the Korean peninsula. For this purpose, two period (present and future) climate data were used. Mean data between 1950 and 2000, were used as the present value and the year 2050 and 2080 data from A1B senario in IPCC SRES were used for the future value. Potential habitation is analyzed by MaxEnt(Maximum Entropy model), and Abeliophyllum distichum's coordinates data were used as a dependent variable and independent variables are composed of environmental data such as BioClim, altitude, aspect and slope. The result of six types GCM mean calculation, the potential habitability decreased by 40-60% of the average existing distribution. The methodogies and results of this research can be applicable to the climate changing adaptation stratiegies for the biodiversity conservation.

대표농도경로 시나리오에 의한 한반도 주요 평야지역 논벼 소비수량 추정 (Projection of Paddy Rice Consumptive Use in the Major Plains of the Korean Peninsula under the RCP Scenarios)

  • 정상옥
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.35-41
    • /
    • 2012
  • The paddy rice consumptive use in the six plains of the Korean peninsula was projected with changing climate under the representative concentration pathway (RCP) scenarios. High resolution climate data for the baseline (1961-1990) was obtained from the International water management institute (IWMI) and future high resolution climate projection was obtained from the Korea Meteorological Administration. Reference evapotranspiration (ET) was calculated by using Hargreaves equation. The results of this study showed that the average annual mean temperature would increase persistently in the future. Temperatures were projected to increase more in RCP8.5 than those in RCP4.5 scenario. The rice consumptive use during the growing period was projected to increase slightly in the 2020s and then more significantly in the 2050s and 2080s. It showed higher values for RCP8.5 than for RCP4.5. The rice consumptive use after transplanting in the study areas would increase by 2.2 %, 5.1 % and 7.2 % for RCP4.5 and 3.0 %, 7.6 %, and 13.3 % for RCP8.5, in the 2020s, 2050s, and 2080s, respectively, from the baseline value of 534 mm. The results demonstrated the effects of climate change on rice consumptive use quite well, and can be used in the future agricultural water planning in the Korean peninsula.

동아시아 지역의 AOGCM 불확실성 평가 및 미래기후전망 (An Uncertainty Assessment of AOGCM and Future Projection over East Asia)

  • 김민지;신진호;이효신;권원태
    • 대기
    • /
    • 제18권4호
    • /
    • pp.507-524
    • /
    • 2008
  • In this paper, future climate changes over East Asia($20^{\circ}{\sim}50^{\circ}N$, $100^{\circ}{\sim}150^{\circ}E$) are projected by anthropogenic forcing of greenhouse gases and aerosols using coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1, A1B and A2 scenarios. Before projection future climate, model performance is assessed by the $20^{th}$ Century (20C3M) experiment with bias, root Mean Square Error (RMSE), ratio of standard deviation, Taylor diagram analysis. The result of examination of the seasonal uncertainty of T2m and PCP shows that cold bias, lowered than that of observation, of T2m and wet bias, larger than that of observation, of PCP are found over East Asia. The largest wet bias is found in winter and the largest cold bias is found in summer. The RMSE of temperature in the annual mean increases and this trend happens in winter, too. That is, higher resolution model shows generally better performances in simulation T2m and PCP. Based on IPCC SRES scenarios, East Asia will experience warmer and wetter climate in the coming $21^{st}$ century. It is predict the T2m increase in East Asia is larger than global mean temperature. As the latitude goes high, the warming over the continents of East Asia showed much more increase than that over the ocean. An enhanced land-sea contrast is proposed as a possible mechanism of the intensified Asian summer monsoon. But, the inter-model variability in PCP changes is large.

비정상성 분위사상법을 이용한 GCM 장기예측 편차보정 (Bias Correction for GCM Long-term Prediction using Nonstationary Quantile Mapping)

  • 문수진;김정중;강부식
    • 한국수자원학회논문집
    • /
    • 제46권8호
    • /
    • pp.833-842
    • /
    • 2013
  • 분위사상법(QM, Quantile Mapping)은GCM(Global Climate Model) 자료의 계통적 오차를 보정하여 보다 신뢰성 높은 자료로 재생성하기 위해 활용되고 있다. 이 기법은 사상(mapping)시키려는 대상(object) 자료의 통계분포모수가 정상적(stationarity)이라는 가정 하에 대상 자료의 누적확률분포(CDF, Cumulative Distribution Function)를 목표(target) CDF에 통계적으로 투영시키는 것이 일반적이다. 따라서 GCM에서 제공되는 미래 기후시나리오의 강우시계열과 같이 비정상성(non-stationarity)을 갖는 장기 시계열자료에 대한 적용에는 문제점을 보이고 있다. 본 연구에서는 비정상성을 갖는 장기시계열자료의 오차보정을 위해 통계분포모수에 경향성을 부여하는 비정상성 분위사상법(NSQM, Nonstationary Quantile Mapping)을 적용하였다. NSQM 적용을 위한 확률분포로 수문분야에서 광범위하게 쓰이고 있는Gamma 분포를 선정하였으며, 대상 시나리오는 CCCma (Canadian Centre for Climate modeling and analysis)에서 제공하고 있는 CGCM3.1/T63모형의 20C3M(reference scenario)과 SRES A2 시나리오(projection scenario)를 활용하였다. 한강유역 내 관측기간이 충분한 10개의 지상관측소로부터 강우량을 수집하였다. 또한 6월과 10월사이에 연 강수량의 65% 이상이 집중되는 한반도의 계절성을 반영하기 위해 홍수기(6~10월)와 비홍수기(11~5월)를 구분하였고, 기준기간(Baseline)은 1973~2000년, 전망기간(Projection)은 2011~2100년으로 구분하였다. 다양한 목표분포의 설정을 통하여 NSQM의 적용성을 평가하고자 하였으며, 전망기간은 FF시나리오(Foreseeable Future Scenario, 2011~2040년), MF시나리오(Mid-term Future Scenario, 2041~2070년), LF시나리오(Long-term Future Scenario, 2071~2100년)의 3개의 구간으로 설정하여 기준기간과 전망기간의 연평균 강우량에 대한 경향성분석을 실시하였다. 그 결과NSQM이 FF시나리오에서 330.1mm(25.2%), MF시나리오에서 564.5mm(43.1%), LF시나리오에서 634.3mm(48.5%)로 증가하는 전망결과를 나타내고 있었다. 정상성기법을 적용한 결과, 전망기간 중 전체적으로는 동일한 평균값을 갖는 목표통계모수를 사용한다고 하여도, 전망전반부에서 과다하고, 후반부에서 오히려 과소한 전망을 보여주고 있었다. 이러한 결과는 비정상성기법을 사용함으로써 상당부분 개선될 수 있음을 확인하였다.

불확실성을 고려한 기후변화 시나리오의 선정 (Selecting Climate Change Scenarios Reflecting Uncertainties)

  • 이재경;김영오
    • 대기
    • /
    • 제22권2호
    • /
    • pp.149-161
    • /
    • 2012
  • Going by the research results of the past, of all the uncertainties resulting from the research on climate change, the uncertainty caused by the climate change scenario has the highest degree of uncertainty. Therefore, depending upon what kind of climate change scenario one adopts, the projection of the water resources in the future will differ significantly. As a matter of principle, it is highly recommended to utilize all the GCM scenarios offered by the IPCC. However, this could be considered to be an impractical alternative if a decision has to be made at an action officer's level. Hence, as an alternative, it is deemed necessary to select several scenarios so as to express the possible number of cases to the maximum extent possible. The objective standards in selecting the climate change scenarios have not been properly established and the scenarios have been selected, either at random or subject to the researcher's discretion. In this research, a new scenario selection process, in which it is possible to have the effect of having utilized all the possible scenarios, with using only a few principal scenarios and maintaining some of the uncertainties, has been suggested. In this research, the use of cluster analysis and the selection of a representative scenario in each cluster have efficiently reduced the number of climate change scenarios. In the cluster analysis method, the K-means clustering method, which takes advantage of the statistical features of scenarios has been employed; in the selection of a representative scenario in each cluster, the selection method was analyzed and reviewed and the PDF method was used to select the best scenarios with the closest simulation accuracy and the principal scenarios that is suggested by this research. In the selection of the best scenarios, it has been shown that the GCM scenario which demonstrated high level of simulation accuracy in the past need not necessarily demonstrate the similarly high level of simulation accuracy in the future and various GCM scenarios were selected for the principal scenarios. Secondly, the "Maximum entropy" which can quantify the uncertainties of the climate change scenario has been used to both quantify and compare the uncertainties associated with all the scenarios, best scenarios and the principal scenarios. Comparison has shown that the principal scenarios do maintain and are able to better explain the uncertainties of all the scenarios than the best scenarios. Therefore, through the scenario selection process, it has been proven that the principal scenarios have the effect of having utilized all the scenarios and retaining the uncertainties associated with the climate change to the maximum extent possible, while reducing the number of scenarios at the same time. Lastly, the climate change scenario most suitable for the climate on the Korean peninsula has been suggested. Through the scenario selection process, of all the scenarios found in the 4th IPCC report, principal climate change scenarios, which are suitable for the Korean peninsula and maintain most of the uncertainties, have been suggested. Therefore, it is assessed that the use of the scenario most suitable for the future projection of water resources on the Korean peninsula will be able to provide the projection of the water resources management that maintains more than 70~80% level of uncertainties of all the scenarios.

기후변화 시나리오를 고려한 농업용 저수지의 미래 용수공급 지속가능성 전망 (Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios)

  • 남원호;홍은미;김태곤;최진용
    • 한국농공학회논문집
    • /
    • 제56권4호
    • /
    • pp.59-68
    • /
    • 2014
  • Climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply, water management, droughts and floods. Understanding the impact of climate change on reservoirs in relation to the passage of time is an important component of water resource management for stable water supply maintenance. Changes on rainfall and hydrologic patterns due to climate change can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the future climate conditions. The purpose of this study is to predict the sustainability of agricultural water demand and supply under future climate change by applying an irrigation vulnerability assessment model to investigate evidence of climate change occurrences at a local scale with respect to potential water supply capacity and irrigation water requirement. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under climate change.

CGCM의 미래 기후 정보를 이용한 기후변화가 낙동강 유역 유황에 미치는 영향분석 (An Analysis of the Effect of Climate Change on Nakdong River Flow Condition using CGCM ' s Future Climate Information)

  • 김문성;고익환;김상단
    • 한국물환경학회지
    • /
    • 제25권6호
    • /
    • pp.863-871
    • /
    • 2009
  • For the assessment of climate change impacts on river flow condition, CGCM 3.1 T63 is selected as future climate information. The projections come from CGCM used to simulate the GHG emission scenario known as A2. Air temperature and precipitation information from the GCM simulations are converted to regional scale data using the statistical downscaling method known as MSPG. Downscaled climate data from GCM are then used as the input data for the modified TANK model to generate regional runoff estimates for 44 river locations in Nakdong river basin. Climate change is expected to reduce the reliability of water supplies in the period of 2021~2030. In the period of 2051~2060, stream flow is expected to be reduced in spring season and increased in summer season. However, it should be noted that there are a lot of uncertainties in such multiple-step analysis used to convert climate information from GCM-based future climate projections into hydrologic information.