• Title/Summary/Keyword: Future climate change

Search Result 1,412, Processing Time 0.028 seconds

Progresses of Climate Change Sciences in IPCC Assessment Reports (IPCC WGI 평가보고서 주요내용 비교를 통한 기후변화에 관한 과학적 진보)

  • Kwon, Won-Tae;Koo, Gyo-Sook;Boo, Kyung-On
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.483-492
    • /
    • 2007
  • The objective of this study is to describe scientific progresses in understanding of climate change in the Intergovernmental Panel on Climate Change (IPCC) assessment reports, contributed by Working group I. Since 1988, IPCC's four assessment reports showed significant improvements in understanding of observed climate change, drivers of climate change, detection and attribution of climate change, climate models, and future projection. The results are based on large amounts of observation data, sophisticated analyses of data, improvements of climate models and the simulations. While the First Assessment Report (FAR) in 1990 reported that a detectable anthropogenic influence on climate has little observational evidence, the Fourth Assessment Report (AR4) reported that warming of the climate system is unequivocal and is very likely due to human influences. It is also noted that anthropogenic warming and sea level rise would continue for centuries due to the time scales associated with climate processes and feedbacks, even if greenhouse gas were to be stabilized.

Estimation of Future Land Cover Considering Shared Socioeconomic Pathways using Scenario Generators (Scenario Generator를 활용한 사회경제경로 시나리오 반영 미래 토지피복 추정)

  • Song, Cholho;Yoo, Somin;Kim, Moonil;Lim, Chul-Hee;Kim, Jiwon;Kim, Sea Jin;Kim, Gang Sun;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.223-234
    • /
    • 2018
  • Estimation of future land cover based on climate change scenarios is an important factor in climate change impact assessment and adaptation policy. This study estimated future land cover considering Shared Socioeconomic Pathways (SSP) using Scenario Generators. Based on the storylines of SSP1-3, future population and estimated urban area were adopted for the transition matrix, which contains land cover change trends of each land cover class. In addition, limits of land cover change and proximity were applied as spatial data. According to the estimated land cover maps from SSP1-3 in 2030, 2050, and 2100, respectively, urban areas near a road were expanded, but agricultural areas and forests were gradually decreased. More drastic urban expansion was seen in SSP3 compared to SSP1 and SSP2. These trends are similar with previous research with regard to storyline, but the spatial results were different. Future land cover can be easily adjusted based on this approach, if econometric forecasts for each land cover class added. However, this requires determination of econometric forecasts for each land cover class.

Estimating potential range shift of some wild bees in response to climate change scenarios in northwestern regions of Iran

  • Rahimi, Ehsan;Barghjelveh, Shahindokht;Dong, Pinliang
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.130-142
    • /
    • 2021
  • Background: Climate change is occurring rapidly around the world, and is predicted to have a large impact on biodiversity. Various studies have shown that climate change can alter the geographical distribution of wild bees. As climate change affects the species distribution and causes range shift, the degree of range shift and the quality of the habitats are becoming more important for securing the species diversity. In addition, those pollinator insects are contributing not only to shaping the natural ecosystem but also to increased crop production. The distributional and habitat quality changes of wild bees are of utmost importance in the climate change era. This study aims to investigate the impact of climate change on distributional and habitat quality changes of five wild bees in northwestern regions of Iran under two representative concentration pathway scenarios (RCP 4.5 and RCP 8.5). We used species distribution models to predict the potential range shift of these species in the year 2070. Result: The effects of climate change on different species are different, and the increase in temperature mainly expands the distribution ranges of wild bees, except for one species that is estimated to have a reduced potential range. Therefore, the increase in temperature would force wild bees to shift to higher latitudes. There was also significant uncertainty in the use of different models and the number of environmental layers employed in the modeling of habitat suitability. Conclusion: The increase in temperature caused the expansion of species distribution and wider areas would be available to the studied species in the future. However, not all of this possible range may include high-quality habitats, and wild bees may limit their niche to suitable habitats. On the other hand, the movement of species to higher latitudes will cause a mismatch between farms and suitable areas for wild bees, and as a result, farmers will face a shortage of pollination from wild bees. We suggest that farmers in these areas be aware of the effects of climate change on agricultural production and consider the use of managed bees in the future.

Planning for Adapting to the Rural Region Impacts of Climate Change - Case study in Yesan - (기후변화에 따른 농촌지역 영향 및 대응방안 연구 - 예산군을 대상으로 -)

  • Lee, Gyeong-Jin;Cha, Jung-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.115-123
    • /
    • 2013
  • Owing to increase of meteorological disasters by climate change, it needs to study of climate change which will be able to deal with adaption for basic local authorities. A case study area of Yesan have been impacted by land-use which alter natural environment demage. It has led to micro-climate change impacts in rural area, Yesan. In order to adapt to the effects, this paper estimated temperature change in productivity of fruits and conducted decline of nonpoint pollutant loadings. As the results of temperature change of effecting on growth of apple, since a rise in temperature have not increased high, therefore the apple productivity could not be influence until 2030s. While the apple productivity could be declined 14.8% in 2060s. In addition, it supposes that the productivity would be decreased 44.5% in 2090s. Furthermore, it showed that the apple maturity has become worse, because length of high temperature has dramatic increased 54.2% in 2030s, 103.2% in 2060s and 154.0% in 2060s beside 2000, respectively, compared with 2000. As results of analysing between the future rainfall characteristics and nonpoint pollutant loadings, the subject of reduction of nonpoint pollutant was efficiency when it implemented around Oga-myeon or Deoksan-myeon Dun-ri. This study classified the region more detail each Eup and Myeon after that it analysed the rural region impacts of climate change for basic local authorities. Hence, this study is able to predict adaptation of rural region impacts of climate change. Due to increase of green house gases emission, meteorological disasters could often occur in the future. Therefore, it needs follow-up studies that assess climate change of effecting on rural region.

Estimation of Energy Use in Residential and Commercial Sectors Attributable to Future Climate Change (미래 기후변화에 따른 가정 및 상업 부문 에너지수요 변화 추정)

  • Jeong, Jee-Hoon;Kim, Joo-Hong;Kim, Baek-Min;Kim, Jae-Jin;Yoo, Jin-Ho;Oh, Jong-Ryul
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.515-522
    • /
    • 2014
  • In this study it is attempted to estimate the possible change in energy use for residential and commercial sector in Korea under a future climate change senario. Based on the national energy use and observed temperature data during the period 1991~2010, the optimal base temperature for determining heating and cooling degree days (HDD and CDD) is calculated. Then, net changes in fossil fuel and electricity uses that are statistically linked with a temperature variation are quantified through regression analyses of HDD and CDD against the energy use. Finally, the future projection of energy use is estimated by applying the regression model and future temperature projections by the CMIP5 results under the RCP8.5 scenario. The results indicate that, overall, the net annual energy use will decrease mostly due to a large decrease in the fossil fuel use for heating. However, a clear seasonal contrast in energy use is anticipated in the electricity use; there will be an increase in a warm-season demand for cooling but a decrease in a cold-season demand for heating.

Predicting Potential Epidemics of Rice Leaf Blast Disease Using Climate Scenarios from the Best Global Climate Model Selected for Individual Agro-Climatic Zones in Korea (국내 농업기후지대 별 최적기후모형 선정을 통한 미래 벼 도열병 발생 위험도 예측)

  • Lee, Seongkyu;Kim, Kwang-Hyung
    • Journal of Climate Change Research
    • /
    • v.9 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • Climate change will affect not only the crop productivity but also the pattern of rice disease epidemics in Korea. Impact assessments for the climate change are conducted using various climate change scenarios from many global climate models (GCM), such as a scenario from a best GCM or scenarios from multiple GCMs, or a combination of both. Here, we evaluated the feasibility of using a climate change scenario from the best GCM for the impact assessment on the potential epidemics of a rice leaf blast disease in Korea, in comparison to a multi?model ensemble (MME) scenario from multiple GCMs. For this, this study involves analyses of disease simulation using an epidemiological model, EPIRICE?LB, which was validated for Korean rice paddy fields. We then assessed likely changes in disease epidemics using the best GCM selected for individual agro?climatic zones and MME scenarios constructed by running 11 GCMs. As a result, the simulated incidence of leaf blast epidemics gradually decreased over the future periods both from the best GCM and MME. The results from this study emphasized that the best GCM selection approach resulted in comparable performance to the MME approach for the climate change impact assessment on rice leaf blast epidemic in Korea.

A Review of Regional Climate Change in East-Asia and the Korean Peninsula Based on Global and Regional Climate Modeling Researches (전구 및 지역기후 모델 결과에 근거한 동아시아 및 한반도 지역기후 변화 전망 연구 소개 및 고찰)

  • Hong, Song You;Kwon, Won Tae;Chung, Il Ung;Baek, Hee Jeong;Byun, Young Hwa;Cha, Dong Hyun
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.269-281
    • /
    • 2011
  • In this review, numerical model results from global and regional climate models are introduced to regional detailed climate changes over East Asia and Korea. In particular, regional climate change scenarios in this region, which are created by several research groups in Korea based on Special Report on Emissions Scenarios (SRES) of IPCC 4th assessment report are introduced and characteristics of the scenarios are investigated. Despite slight differences in intensity, all scenarios reveal prominent warming over the Korean peninsula in future climate. Changes in precipitation amount vary with given scenarios and periods, but the frequency and intensity of heavy precipitation generally tend to increase in all scenarios. South Korea except for mountainous regions is expected to change into subtropical climate in future, which accompanies distinct changes in ecosystems and seasons.

Changes in Potential Distribution of Pinus rigida Caused by Climate Changes in Korea (기후변화에 따른 리기다소나무림의 잠재 생육적지 분포 변화 예측)

  • Kim, Yong-Kyung;Lee, Woo-Kyun;Kim, Young-Hwan;Oh, Suhyun;Heo, Jun-Hyeok
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.509-516
    • /
    • 2012
  • In this research, it was intended to examine the vulnerability of Pinus rigida to climate changes, a major planting species in Korea. For this purpose, the distribution of Pinus rigida and its changes caused by climate changes were estimated based on the 'A1B' climate change scenario suggested by IPCC. Current distribution of Pinus rigida was analyzed by using the $4^{th}$Forest Type Map and its potential distribution in the recent year (2000), the near future (2050) and the further future (2100) were estimated by analyzing the optimized ranges of three climate indices - warmth index(WI), minimum temperature index of the coldest month (MTCI) and precipitation effectiveness index(PEI). The results showed that the estimated potential distribution of Pinus rigida declines to 56% in the near future(2050) and 15% in the further future (2100). This significant decline was found in most provinces in Korea. However, in Kangwon province where the average elevation is higher than other provinces, the area of potential distribution of Pinus rigida increases in the near future and the further future. Also the result indicated that the potential distribution of Pinus rigida migrates to higher elevation. The potential distributions estimated in this research have relatively high accuracy with consideration of classification accuracy (44.75%) and prediction probability (62.56%).

Simulation of the GHG Emissions Impact on Climate Change from Radish Field (기후변화에 따른 무 밭의 온실가스 배출량 모의)

  • Shin, Min Hwan;Lee, Su In;Jang, Jeong Ryeol;Shin, Jae Young;Park, Youn Shik;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.101-112
    • /
    • 2015
  • This study was conducted to predict greenhouse gas (GHG) emission from a radish field by future climate change scenario. A radish field located at Chuncheon-si Gangwon-do was selected, and A1B Special Report on Emission Scenario (SRES) of the IPCC (Intergovernmental panel on climate change) was applied to simulate the future potential climate change. Rainfall and temperature data were predicted to be increased by 8.4 % and 1.9 % in 2040s, 35.9 % and 27.0 % in 2060s, 19.2 % and 30.8 % in 2090s, respectively, compared to the climate data in 2010s. The $N_2O$, $CO_2$, and $CH_4$ emission were estimated to be increased by 0.4 up to 2.4 kg/ha/yr, by 500.5 up to 734.5 kg/ha/year, and by 29.4 up to 160.4 kg/ha/yr, which were resulted from the global warming potential (GWP) of 14.5~21.7 $CO_2$/ha/year caused by the amount changes of rainfall, temperature, manure amendment, and fertilizer applied in fields. One distinct feature of the study result was that the changes of $N_2O-N$, $CH_4-C$ and $CO_2-C$ with future potential climate change simulation were varied by soil texture. Therefore it was concluded that there is a need to apply appropriate amount of manure amendment needs and to consider soil texture as well.

Projection of climate change effects on the potential distribution of Abeliophyllum distichum in Korea (기후변화에 따른 우리나라 미선나무의 분포변화 예측)

  • Lee, Sang-Hyuk;Choi, Jae-Yong;Lee, You-Mi
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.219-225
    • /
    • 2011
  • Changes in biota, species distribution range shift and catastrophic climate influence due to recent global warming have been observed during the last century. Since global warming affects various sectors, such as agriculture and vegetation, it is important to predict more accurate impact of future climate change. The purpose of this study is to examine the observed distribution of Abeliophyllum distichum in the Korean peninsula. For this purpose, two period (present and future) climate data were used. Mean data between 1950 and 2000, were used as the present value and the year 2050 and 2080 data from A1B senario in IPCC SRES were used for the future value. Potential habitation is analyzed by MaxEnt(Maximum Entropy model), and Abeliophyllum distichum's coordinates data were used as a dependent variable and independent variables are composed of environmental data such as BioClim, altitude, aspect and slope. The result of six types GCM mean calculation, the potential habitability decreased by 40-60% of the average existing distribution. The methodogies and results of this research can be applicable to the climate changing adaptation stratiegies for the biodiversity conservation.