• Title/Summary/Keyword: Fusion Filter

Search Result 307, Processing Time 0.025 seconds

GPS/INS Fusion Using Multiple Compensation Method Based on Kalman Filter (칼만 필터를 이용한 GPS/INS융합의 다중 보정 방법)

  • Kwon, Youngmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.190-196
    • /
    • 2015
  • In this paper, we propose multiple location error compensation algorithm for GPS/INS fusion using kalman filter and introduce the way to reduce location error in 9-axis navigation devices for implementing inertial navigation technique. When evaluating location, there is an increase of location error. So navigation systems need robust algorithms to compensate location error in GPS/INS fusion. In order to improve robustness of 9-axis inertial sensor(mpu-9150) over its disturbance, we used tilt compensation method using compensation algorithm of acceleration sensor and Yaw angle compensation to have exact azimuth information of the object. And it shows improved location result using these methods combined with kalman filter.

Precision Analysis of NARX-based Vehicle Positioning Algorithm in GNSS Disconnected Area

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.289-295
    • /
    • 2021
  • Recently, owing to the development of autonomous vehicles, research on precisely determining the position of a moving object has been actively conducted. Previous research mainly used the fusion of GNSS/IMU (Global Positioning System / Inertial Navigation System) and sensors attached to the vehicle through a Kalman filter. However, in recent years, new technologies have been used to determine the location of a moving object owing to the improvement in computing power and the advent of deep learning. Various techniques using RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), and NARX (Nonlinear Auto-Regressive eXogenous model) exist for such learning-based positioning methods. The purpose of this study is to compare the precision of existing filter-based sensor fusion technology and the NARX-based method in case of GNSS signal blockages using simulation data. When the filter-based sensor integration technology was used, an average horizontal position error of 112.8 m occurred during 60 seconds of GNSS signal outages. The same experiment was performed 100 times using the NARX. Among them, an improvement in precision was confirmed in approximately 20% of the experimental results. The horizontal position accuracy was 22.65 m, which was confirmed to be better than that of the filter-based fusion technique.

Tracking of ARPA Radar Signals Based on UK-PDAF and Fusion with AIS Data

  • Chan Woo Han;Sung Wook Lee;Eun Seok Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.38-48
    • /
    • 2023
  • To maintain the existing systems of ships and introduce autonomous operation technology, it is necessary to improve situational awareness through the sensor fusion of the automatic identification system (AIS) and automatic radar plotting aid (ARPA), which are installed sensors. This study proposes an algorithm for determining whether AIS and ARPA signals are sent to the same ship in real time. To minimize the number of errors caused by the time series and abnormal phenomena of heterogeneous signals, a tracking method based on the combination of the unscented Kalman filter and probabilistic data association filter is performed on ARPA radar signals, and a position prediction method is applied to AIS signals. Especially, the proposed algorithm determines whether the signal is for the same vessel by comparing motion-related components among data of heterogeneous signals to which the corresponding method is applied. Finally, a measurement test is conducted on a training ship. In this process, the proposed algorithm is validated using the AIS and ARPA signal data received by the voyage data recorder for the same ship. In addition, the proposed algorithm is verified by comparing the test results with those obtained from raw data. Therefore, it is recommended to use a sensor fusion algorithm that considers the characteristics of sensors to improve the situational awareness accuracy of existing ship systems.

A wireless sensor with data-fusion algorithm for structural tilt measurement

  • Dan Li;Guangwei Zhang;Ziyang Su;Jian Zhang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.301-309
    • /
    • 2023
  • Tilt is a key indicator of structural safety. Real-time monitoring of tilt responses helps to evaluate structural condition, enable cost-effective maintenance, and enhance lifetime resilience. This paper presents a prototype wireless sensing system for structural tilt measurement. Long range (LoRa) technology is adopted by the sensing system to offer long-range wireless communication with low power consumption. The sensor integrates a gyroscope and an accelerometer as the sensing module. Although tilt can be estimated from the gyroscope or the accelerometer measurements, these estimates suffer from either drift issue or high noise. To address this challenging issue and obtain more reliable tilt results, two sensor fusion algorithms, the complementary filter and the Kalman filter, are investigated to fully exploit the advantages of both gyroscope and accelerometer measurements. Numerical simulation is carried out to validate and compare the sensor fusion algorithms. Laboratory experiment is conducted on a simply supported beam under moving vehicle load to further investigate the performance of the proposed wireless tilt sensing system.

Design of decentralized $H^\infty$ state estimator using the generalization of $H^\infty$ filter in indefinite inner product spaces (부정 내적 공간에서의 $H^\infty$필터의 일반화를 통한 분산 $H^\infty$상태 추정기의 설계)

  • 김경근;진승희;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1464-1468
    • /
    • 1997
  • We propose a decentralized state estimation method in the multisensor state estimation problem. The proposed method bounds teh maximum energy gain from uknown external disturbances to the estimation errors in the suboptimal case. And we formulate aternative H/sip .inf./ filter gain equatiions with teh idea that the suboptimal H.$^{\infty}$ filter is the special form of Kalman filter filter whose state equations are defined in indefinite inner product spaces. Using alternative filter gain equations we design the decentralized $H^{\infty}$ state estimator which is composed of local filters and central fusion filter that are suboptimal in the $H^{\infty}$ sense. In addition, the proposed update equations between global and local data can reduce unnecessary calculation burden efficently.y.

  • PDF

Short Range Target Tracking Based on Data Fusion Method Using Asynchronous Dissimilar Sensors (비동기 이종 센서를 이용한 데이터 융합기반 근거리 표적 추적기법)

  • Lee, Eui-Hyuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.335-343
    • /
    • 2012
  • This paper presents an target tracking algorithm for fusion of radar and infrared(IR) sensor measurement data. Generally, fusion methods with Kalman filter assume that processing data obtained by radar and IR sensor are synchronized. It has much limitation to apply the fusion methods to real systems. A key point which is taken into account in the proposed algorithm is the fact that two asynchronous dissimilar data are fused by compensating the time difference of the measurements using radar's ranges and track state vectors. The proposed fusion algorithm in the paper is evaluated via a computer simulation with the existing track fusion and measurement fusion methods.

Pose Estimation of Ground Test Bed using Ceiling Landmark and Optical Flow Based on Single Camera/IMU Fusion (천정부착 랜드마크와 광류를 이용한 단일 카메라/관성 센서 융합 기반의 인공위성 지상시험장치의 위치 및 자세 추정)

  • Shin, Ok-Shik;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.54-61
    • /
    • 2012
  • In this paper, the pose estimation method for the satellite GTB (Ground Test Bed) using vision/MEMS IMU (Inertial Measurement Unit) integrated system is presented. The GTB for verifying a satellite system on the ground is similar to the mobile robot having thrusters and a reaction wheel as actuators and floating on the floor by compressed air. The EKF (Extended Kalman Filter) is also used for fusion of MEMS IMU and vision system that consists of a single camera and infrared LEDs that is ceiling landmarks. The fusion filter generally utilizes the position of feature points from the image as measurement. However, this method can cause position error due to the bias of MEMS IMU when the camera image is not obtained if the bias is not properly estimated through the filter. Therefore, it is proposed that the fusion method which uses the position of feature points and the velocity of the camera determined from optical flow of feature points. It is verified by experiments that the performance of the proposed method is robust to the bias of IMU compared to the method that uses only the position of feature points.

Synchronous Interfusion of the Compensatory Filters Based on Multi-rate Sensors for the Control of the Autonomous Vehicle (자율주행 차량 제어를 위한 다중 주기 센서 기반의 상보 필터 동기 융합)

  • Bak, Jeong-Hyeon;Lee, Kwanghee;Lee, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2014
  • This paper presents about multi-rate sensors' synchronization and filter fusion via a sigmoid function of the Kalman filter. To synchronize multi-rate sensors, the estimation states of the Kalman filter is modified. A specific matrix that makes the filter choose sensor values only updated is multiplied to measurement matrix. For the filter that has weak points on some criteria, filter fusion is suggested by using sigmoid function. Modified kalman filter is tested with practical case. A sigmoid function was designed for the test and the performance of the modified function is estimated with respect to conventional Kalman filter. Unscented Kalman filter is used to the base filter of the suggested filter because of its stability.

A Study on the Improvement of Image Fusion Accuracy Using Smoothing Filter-based Replacement Method (SFR기법을 이용한 영상 융합의 정확도 향상에 관한 연구)

  • Yun Kong-Hyun
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.85-94
    • /
    • 2006
  • Image fusion techniques are widely used to integrate a lower spatial resolution multispectral image with a higher spatial resolution panchromatic image. However, the existing techniques either cannot avoid distorting the image spectral properties or involve complicated and time-consuming decomposition and reconstruction processing in the case of wavelet transform-based fusion. In this study a simple spectral preserve fusion technique: the Smoothing Filter-based Replacement(SFR) is proposed based on a simplified solar radiation and land surface reflection model. By using a ratio between a higher resolution image and its low pass filtered (with a smoothing filter) image, spatial details can be injected to a co-registered lower resolution multispectral image minimizing its spectral properties and contrast. The technique can be applied to improve spatial resolution for either colour composites or individual bands. The fidelity to spectral property and the spatial quality of SFM are convincingly demonstrated by an image fusion experiment using IKONOS panchromatic and multispectral images. The visual evaluation and statistical analysis compared with other image fusion techniques confirmed that SFR is a better fusion technique for preserving spectral information.

  • PDF

Visual Attention Model Based on Particle Filter

  • Liu, Long;Wei, Wei;Li, Xianli;Pan, Yafeng;Song, Houbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3791-3805
    • /
    • 2016
  • The visual attention mechanism includes 2 attention models, the bottom-up (B-U) and the top-down (T-D), the physiology of which have not yet been accurately described. In this paper, the visual attention mechanism is regarded as a Bayesian fusion process, and a visual attention model based on particle filter is proposed. Under certain particular assumed conditions, a calculation formula of Bayesian posterior probability is deduced. The visual attention fusion process based on the particle filter is realized through importance sampling, particle weight updating, and resampling, and visual attention is finally determined by the particle distribution state. The test results of multigroup images show that the calculation result of this model has better subjective and objective effects than that of other models.