• Title/Summary/Keyword: Fused combining

Search Result 32, Processing Time 0.024 seconds

Fabrication and Characterization of N×N Plastic Optical Fiber Star Coupler based on Fused Combining

  • Kim, Kwang Taek;Lee, Byeong Ha;Lee, Cherl-Hee;Lee, Jonghun
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2013
  • High performance plastic optical fiber (POF) $N{\times}N$ star couplers are implemented based on fusing and combining technology. A set of cladding-removed POFs are fused into a solid body by heating and pressing them together to form the transition region between the input and output sides. The operation principle of the proposed star coupler is explained based on ray optics. To demonstrate the performance of the device, $2{\times}2$, $4{\times}4$ and $6{\times}6$ type POF couplers were fabricated and characterized. Performances of the POF star couplers were evaluated in terms of the flatness of the coupling ratios and excess losses.

Case study: application of fused sliced average variance estimation to near-infrared spectroscopy of biscuit dough data (Fused sliced average variance estimation의 실증분석: 비스킷 반죽의 근적외분광분석법 분석 자료로의 적용)

  • Um, Hye Yeon;Won, Sungmin;An, Hyoin;Yoo, Jae Keun
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.835-842
    • /
    • 2018
  • The so-called sliced average variance estimation (SAVE) is a popular methodology in sufficient dimension reduction literature. SAVE is sensitive to the number of slices in practice. To overcome this, a fused SAVE (FSAVE) is recently proposed by combining the kernel matrices obtained from various numbers of slices. In the paper, we consider practical applications of FSAVE to large p-small n data. For this, near-infrared spectroscopy of biscuit dough data is analyzed. In this case study, the usefulness of FSAVE in high-dimensional data analysis is confirmed by showing that the result by FASVE is superior to existing analysis results.

Multisensor Image Fusion for Enhanced Coastal Wetland Mapping

  • Shanmugam, P.;Ahn, Yu-Hwan;Sanjeevi, S.;Yoo, Hong-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.902-904
    • /
    • 2003
  • The main objective of this paper is to investigate the potential utility of multisensor remotely sensed data for improved coastal wetland mapping. Five data fusion models, three algebraic models (Multiplicative (MT), Brovey (BT) and Wavelet transform (WT)) and two spectral domain models (Principals component transform (PCT) and Intensity-Hue-Saturation (IHS)) were implemented and tested over the multisensor data. The fused images were then compared based on visual and statistical approaches. The results show that the wavelet transform provides greater flexibility for combining optical data sets and has good potential for preserving the spatial and spectral content of the original images . However, this model yields poor information when combining optical and microwave data. Brovey transform is more reliable for fusing optical and microwave image data and yields improved information about different wetland features of the coastal zone.

  • PDF

Fabrication of BCP/Silica Scaffolds with Dual-Pore by Combining Fused Deposition Modeling and the Particle Leaching Method (압출 적층 조형법과 입자 추출법을 결합한 이중 공극 BCP/Silica 인공지지체의 제작)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.865-871
    • /
    • 2016
  • In recent years, traditional scaffold fabrication techniques such as gas foaming, salt leaching, sponge replica, and freeze casting in tissue engineering have significantly limited sufficient mechanical property and cell interaction effect due to only random pores. Fused deposition modeling is the most apposite technology for fabricating the 3D scaffolds using the polymeric materials in tissue engineering application. In this study, 3D slurry mould was fabricated with a blended biphasic calcium phosphate (BCP)/Silica/Alginic acid sodium salt slurry in PCL mould and heated for two hours at $100^{\circ}C$ to harden the blended slurry. 3D dual-pore BCP/Silica scaffold, composed of macro pores interconnected with micro pores, was successfully fabricated by sintering at furnace of $1100^{\circ}C$. Surface morphology and 3D shape of dual-pore BCP/Silica scaffold from scanning electron microscopy were observed. Also, the mechanical properties of 3D BCP/Silica scaffold, according to blending ratio of alginic acid sodium salt, were evaluated through compression test.

A Study on Shear Bond Strength of Heat Press Ceramic to Non Precious Porcelain Metal (도재용착용 비귀금속과 열가압성형도재의 전단결합강도 연구)

  • Kim, Seong-Soo;Kim, Wook-Tae;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • Purpose: Heat pressed ceramics, used for all ceramic restorations, have the additional advantage of being technically less change through using of the lost-wax technique. Conceptually, combining the ceramic with the clinically proven reinforcing ability of a metal framework would be advantageous; however, cause of mismatching of fusion between ceramics and metal frameworks which from differences of casting temperature and coefficient of thermal expansion, pressed ceramics could not be used with a metal framework. The purpose of this study was to compare shear bond strength of press-to metal ceramic to porcelain fused non precious metal and feldspatic porcelain fused non precious metal. Methods: The 30 metal specimens were casted in a porcelain fused non precious metal nickel-chromium alloy. They were divided into 3 groups by surface treatment and applied ceramic: $125{\mu}m$ aluminium oxide sandblasting and veneered feldspatic porcelain (group FP), $125{\mu}m$ aluminium oxide sandblasting and had press-to-metal ceramic applied (group PC), porcelain bonder (gold bonder) fused on surface of metal specimens and had press-to-metal ceramic applied (group PCG). In each group 10 metal specimens were used. The press-to-metal ceramic applied 20 specimens had ash-free wax pattern applied, the metal-wax complexes invested, and were pressed with heat press ceramic. All specimens were subjected to shear bond strength test at a crosshead speed of 1.0 mm/min. Results: The results of measured in Mean SD and data were analyzed by one-way AVOVA (p= .05) and Tukey HSD test (p= .05).: group FP $16.090{\pm}1.841$ MPa, group PC $12.620{\pm}1.8256$ MPa, group PCG $10.920{\pm}0.9283$, significant differences between all groups (p < .05). Significant differences were found in each between group FP and group PC, group FP and group PCG (p < .05). Conclusion: The shear bond strength of press-to-metal ceramic to porcelain fused non precious metal was described higher in unused gold bonder group than used gold bonder groups.

An Investigation into Three Dimensional Mutable 'Living' Textile Materials and Environments (2) (3D 가상 이미지의 텍스타일 소재로의 적용을 통한 삼차원 변형가능한 'Living Textil'과 환경변화에 관한 연구 (2))

  • Kim, Ki-Hoon;Suh, Ji-Sung
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.2
    • /
    • pp.316-323
    • /
    • 2011
  • This research aim concerns questioning how we can generate environments suggestive of nature fused with built environments through textiles. Through literature reviews and experiments with available the 3D imaging techniques of Holography, Lenticular and other new technologies. We also have researched towards finding the most effective method for 3D imaging techniques for textile applications. The advantage of the combining technique is to create the possibility of seeing a number of different floating 3D illusory images, depending on the viewing angle. This objective is to produce intriguing textile patterns and images in which the objects and colours change as viewpoints change. Experimental work was carried out in collaboration with professional textile researchers, scientists, artists and designers conducting research in this field.

Human Motion Recognition Based on Spatio-temporal Convolutional Neural Network

  • Hu, Zeyuan;Park, Sange-yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.977-985
    • /
    • 2020
  • Aiming at the problem of complex feature extraction and low accuracy in human action recognition, this paper proposed a network structure combining batch normalization algorithm with GoogLeNet network model. Applying Batch Normalization idea in the field of image classification to action recognition field, it improved the algorithm by normalizing the network input training sample by mini-batch. For convolutional network, RGB image was the spatial input, and stacked optical flows was the temporal input. Then, it fused the spatio-temporal networks to get the final action recognition result. It trained and evaluated the architecture on the standard video actions benchmarks of UCF101 and HMDB51, which achieved the accuracy of 93.42% and 67.82%. The results show that the improved convolutional neural network has a significant improvement in improving the recognition rate and has obvious advantages in action recognition.

Speech Emotion Recognition using Feature Selection and Fusion Method (특징 선택과 융합 방법을 이용한 음성 감정 인식)

  • Kim, Weon-Goo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1265-1271
    • /
    • 2017
  • In this paper, the speech parameter fusion method is studied to improve the performance of the conventional emotion recognition system. For this purpose, the combination of the parameters that show the best performance by combining the cepstrum parameters and the various pitch parameters used in the conventional emotion recognition system are selected. Various pitch parameters were generated using numerical and statistical methods using pitch of speech. Performance evaluation was performed on the emotion recognition system using Gaussian mixture model(GMM) to select the pitch parameters that showed the best performance in combination with cepstrum parameters. As a parameter selection method, sequential feature selection method was used. In the experiment to distinguish the four emotions of normal, joy, sadness and angry, fifteen of the total 56 pitch parameters were selected and showed the best recognition performance when fused with cepstrum and delta cepstrum coefficients. This is a 48.9% reduction in the error of emotion recognition system using only pitch parameters.

Fundamental Aspects of Resistance Sintering under Ultrahigh Pressure Consolidation

  • Zhou, Zhangjian;Kim, Ji-Soon;Yum, Young-Jin
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • The consolidation results of fine tungsten powders, W-Cu composite and W/Cu FGM by using a novel method combining resistance sintering with ultra high pressure have been reviewed. The densification effects of the consolidation parameters, including pressure, input power and sintering time, have been investigated. The sintering mechanism of this method was quite different from other sintering methods. Particle rearrangement, sliding, distortion and crushing due to the ultra high pressure are the dominant mehanisms at the initial stage, then the dominant sintering mechanisms are transient arc-fused processes controlled by the input power.

Image Fusion for Improving Classification

  • Lee, Dong-Cheon;Kim, Jeong-Woo;Kwon, Jay-Hyoun;Kim, Chung;Park, Ki-Surk
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1464-1466
    • /
    • 2003
  • classification of the satellite images provides information about land cover and/or land use. Quality of the classification result depends mainly on the spatial and spectral resolutions of the images. In this study, image fusion in terms of resolution merging, and band integration with multi-source of the satellite images; Landsat ETM+ and Ikonos were carried out to improve classification. Resolution merging and band integration could generate imagery of high resolution with more spectral bands. Precise image co-registration is required to remove geometric distortion between different sources of images. Combination of unsupervised and supervised classification of the fused imagery was implemented to improve classification. 3D display of the results was possible by combining DEM with the classification result so that interpretability could be improved.

  • PDF