• Title/Summary/Keyword: Fusarium equiseti.

Search Result 25, Processing Time 0.03 seconds

Incidence of Fusarium and other Molds in Korean Field Crops

  • Ryu, Dojin;Bullerman, Lloyd B.
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.43-47
    • /
    • 1998
  • The incidence of total molds, Fusarium species, and the estrogenic mycotoxin,zearalenone, in Korean grain samples were investigated . The majority of molds infecting grain were identified as belonging to the genus Alternaria , with an average infection rate of kernels of 43% and 32% in rice and baley, respectively. Fusarium speciens were less common, with average infection rates of 13% and 19% in reice and barley, respectively. A number of field fungi including Curvularia and Dactylaria were also observed. Among the Fusarium speices, 71 of 94 Fusarium isolates were identified as F.semitectum. A few F. moniliforme and F. equiseti were observed linked immunosorbent assay (ELISA) or high-performance liquid chromatography(HPLC). In addition, deoxynivalenol was not deteted by ELISA . However, thepresence of molds, including Fusarium species, may pose possbile health hazards to persons consuming those grains.

  • PDF

Fungi Associated with Soybean Seed, their Pathogenicity and Seed Treatment (콩 종자(種子)에서 분리(分離)한 사상균(絲狀菌), 그 병원성(病原性) 및 종자(種子) 소독(消毒)에 관한 연구(硏究))

  • Lee, Du-Hyung
    • The Korean Journal of Mycology
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 1984
  • Alternaria tenuis, Arthrobotrytis sp., Aspergillus spp., Cephalosporium sp., Cladosporium sp., Cylindrocarpon sp., Fusarium equiseti, F. moniliforme, F. semitectum, F. solani, Penicillium spp., Rhizopus sp. were saprophytic fungi and Cercospora kikuchii, Colletotrichum truncatum, Diaporthe phaseolorum var. sojae and Fusarium oxysporum were pathogenic fungi detected from 14 seed samples of soybean. Initial symptoms caused by C. kikuchii, C. truncatum, D. phaseolorum sojae and F. oxysporum on seedlings from naturally infected seed by the test tube agar method have been described and discussed. Soybean seeds infected with C. truncatum, D. phaseolorum sojae and F. oxysporum reduced germination of seeds and have influenced on the growth of soybean seedling caused by C. kikuchii. Surface-sterilized soybean seedlings became diseased in the test tube agar artificially inoculated with C. kikuchii, C. truncatum and D. phaseolorum sojae isolated from naturally infected soybean seeds. F. oxysporum showed very weak pathogenicity. Seed disinfectants of Benlate-T, Homai, Tecto and Sisthane have effective to C. kikuchii, C. truncatum, D. phaseolorum sojae and F. oxysporum. Arasan, Captan, Busan-30 and Mercron were inferior to C. kikuchii but effective against others. Seed disinfectants treated in this experiment have increased seed germination campared with non-treatment.

  • PDF

Wilt of Perilla Caused by Fusarium spp.

  • Kim, Woo-Sik;Kim, Wan-Gyu;Cho, Weon-Dae;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.293-299
    • /
    • 2002
  • A survey of Fusarium wilt of perilla was conducted in 12 locations in Korea from 1999 to 2001. The disease occurred in 74 out of 187 fields in the 12 locations surveyed, and incidence of the disease reached up to 30% at its maximum in some perilla fields in Seosan and Dangjin. Incidence of the disease in the other locations ranged from 0.2 to 20%. A total of 327 isolates of Fusarium spp. were obtained from stems and roots of the diseased perilla plants. The isolates were identified based on their morphological characteristics. Out of the 327 isolates of Fusarium, 277 isolates from 12 locations were identified as F. oxysporum, 11 isolates from three locations as F. solani,17 isolates from two locations as F. equiseti, 4 isolates from one location as F. avenaceum and 6 isolates from one location as F. subglutinans. The other 12 isolates of Fusarium from four locations were unidentified. Twelve isolates of F. oxysporum and two isolates each of the other Fusarium spp. were tested for their pathogenicity to five cultivars of perilla. Seven isolates of F. oxysporum were strongly pathogenic to some perilla cultivars, but the other five isolates were weakly or not pathogenic. One isolate of F. solani was strongly pathogenic to all the perilla cultivars tested, but another isolate was not pathogenic. All the isolates of F. equiseti, F. avenaceum, and F. Subglutinans tested were not pathogenic to any of the perilla cultivars tested. Symptoms on the perilla plants induced by artificial inoculation with strongly pathogenic isolates of F. oxysporum and F. solani appeared as wilt, stem blight, and root yet, which were similar to those observed in the fields. The isolates which induced symptoms by artificial inoculation were re-isolated from the lesions of the perilla plants inoculated. All the isolates of F. oxysporum tested were not pathogenic to eight other crops inoculated. Results of this study reveal that F. oxysporum is the main pathogen of perilla wilt and that it is host specific to perilla. forma specialis of F. oxysporum causing wilt of perilla is proposed as perillae.

Isolation of Anagonistic Fungi Associated with the Lichens Distributed in Southern Parts of Korea

  • Hur, Jae-Seoun;Han, Geon-Seon;Kim, Jin-Won;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.15 no.5
    • /
    • pp.280-286
    • /
    • 1999
  • Lichen-forming (LFF) or lichenicolous fungi (LCF) were isolated from the lichens collected at‘Backwoon’mountain area,‘Chiri’mountain area and‘Sorok’island in the southern regions of Korea and were screened for antagonistic efficacy against several phyto-pathogenic fungi. Symbiotic algae-free LFF and LCF were isolated by the following methods: I) discharged spores (ascospores), II) macerated thallus suspension and III) direct use of thallus fragments. Among 58 isolates obtained from 34 lichens, 8 isolates showed antifungal activity against Rhizoctonia solani. Antifungal activities of the strongest antagonistic isolate (LB9810) originated from the thallus of Parmelia quercina lichen were evaluated against 15 phyto-pathogenic fungi. When crude methanol extract of mycelia of the LB8910 isolate was employed at the rate of 0.5% (v/w), fungal growth of Magnaporthe grisea and Rhizoctonia solani was severly and Rhizoctonia solani was severly inhibited as much as approximately 60% compared to control. Growth of various food-borne same extract. The extract was successively partitioned with n-hexane, ethyl acetate and n-butanol. n-Hexane fraction displayed the strongest antifungal activities against R. solani. The LB9810 isolate was finally identified as Fusarium equiseti (Corda) Sacc., which has not been reported as LFF or LCF yet. Therefore, it is very likely that F. equiseti isolated it the study was originated from the contaminants associated with thallus fragments rather than from LFF or LCF.

  • PDF

Fusarium species Associated with Ginseng (Panax ginseng) and Their Role in the Root-Rot of Ginseng Plant (인삼 뿌리썩음병(根 病) 관련 Fusarium species와 그 병원성)

  • Lee, Soon-Gu
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.248-259
    • /
    • 2004
  • A total 115 isolates of Fusarium species from ginseng roots of 'rotted', and soils collected during 1982-1985 in Korea, were identified and classified into 11 species with the Snyder & Hansen System (with reference to Gerlach-Nirenberg's Modified System). The most dominant of these species were F. solani (55 isolates), F. oxysporum (35 isolates), and F. moniliforme (10 isolates) sensu Snyder & Hansen. The other 8 species (15 isolates) were very rarely isolated and previously identified as F. roseum sensu Snyder & Hansen (1945); these were F. equiseti, F. avenaceum, F. graminum, F. arthrosporioides, F. sambucinum, F. reticulatum, F. semitectum and F. poa. Tested for the ability to infect the roots of ginseng (3 yr. old plants) in field condition with the mycelial inoculum, only one isolate of F. solani (34 isolates tested) and one isolate of F. oxysporum (24 isolates tested) were weakly pathogenic to ginseng roots. Any of the isolates (7 isolates tested) of F. moniliforme [Liseola section] were not pathogenic to ginseng. However, all the isolates of tested of the species of Phytophthora cactorum, Pythium ultimum, and Cylindrocarpon destructans were highly pathogenic to ginseng roots. The species of Fusarium solani and Cylindrocarpon destructans were supposed to be a host dominant disease agent in ginseng plant.

Diversity and Pathogenicity of Fusarium Species Associated with Head Blight of Job's Tears (율무 이삭마름 증상에서 분리한 Fusarium속 균의 다양성 및 병원성)

  • Choi, Hyo-Won;Hong, Sung-Kee;Kim, Wan-Gyu;Lee, Young-Kee
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • Job's tears (Coix lacryma-jobi) is native to East Asia, and grains of the plant are used as health food and medicinal material. Head blight symptoms of the plant were frequently observed during disease surveys in Korea from 2006 to 2008. The symptoms were characterized as discoloration of husks, and subsequently inside of mature grains were shriveled or emptied. One hundred fifty nine isolates of Fusarium species were obtained from the disease symptoms of the plant collected from several locations in the country. Out of the isolates, the most frequently isolated Fusarium species were F. graminearum (34%), F. proliferatum (14.5%), F. verticillioides (10.1%), F. equiseti (6.9%), and F. fujikuroi (6.3%). Other Fusarium species isolated were F. subglutinans, F. semitectum, F. poae, and F. sporodochioides. Elongation factor 1 alpha gene sequences of the isolates were used for phylogenetic analysis. Analyses of the sequences revealed that the isolates were confirmed to be identical with each reference species of NCBI GenBank. Pathogenicity tests showed that F. graminearum, F. proliferatum and F. verticillioides were strongly virulent to grains of Job's tears. The present study is the first report of head blight of Job's tears caused by Fusarium species in Korea.

Diversity and Pathogenicity of Fusarium Species Associated with Grain Mold of Sorghum (수수 이삭곰팡이 증상에서 분리한 Fusarium속 균의 다양성 및 병원성)

  • Choi, Hyo-Won;Hong, Sung Kee;Lee, Young Kee;Kim, Wan Gyu
    • The Korean Journal of Mycology
    • /
    • v.41 no.3
    • /
    • pp.142-148
    • /
    • 2013
  • Sorghum (Sorghum bicolor Moench) was traditionally grown on a small scale, however, at present its cultivation is getting momentum in terms of food and animal feed crop throughtout the Korea. Grain mold symptoms of the plant were frequently observed during disease surveys in Korea from 2007 to 2009. The symptoms were highly variable. Severely infected grain was fully covered with mold and partially infected grain may look normal or discolored. Ninety isolates of Fusarium species were obtained from the diseased plants collected from several locations in the country. Among the collected Fusarium isolates, 41 were identified as Fusarium thapsinum, 23 as F. proliferatum, 12 as F. graminearum, 5 as F. incarnatum, and 3 as F. equiseti based on their morphological and cultural characteristics. Elongation factor 1 alpha gene sequences of the isolates were used for phylogenetic analysis. Analyses of the sequences revealed that the isolates were confirmed to be identical with related species of NCBI GenBank. Pathogenicity tests showed that three dominant species, F. thapsinum, F. proliferatum and F. graminearum were strongly virulent to grains of sorghum. This study is the first report of sorghum grain mold caused by Fusarium species in Korea.

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF

Potential Reasons for Prevalence of Fusarium Wilt in Oriental Melon in Korea

  • Seo, Yunhee;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.249-263
    • /
    • 2017
  • This study aims to examine the potential reasons for the current prevalence of the fusarium wilt in the oriental melon. Twenty-seven Fusarium isolates obtained from oriental melon greenhouses in 2010-2011 were identified morphologically and by analysis of elongation factor-1 alpha gene (EF-$1{\alpha}$) and internal transcribed spacer (ITS) rDNA sequences as 6 Fusarium species (8 isolates of F. oxysporum, 8 F. commune, 5 F. proliferatum, 3 F. equiseti, 2 F. delphinoides, and 1 F. andiyazi), which were classified as same into 6 EF-$1{\alpha}$ sequence-based phylogenetic clades. Pathogenicity of the Fusarium isolates on the oriental melon was highest in F. proliferatum, next in F. oxysporum and F. andiyazi, and lowest in the other Fusarium species tested, suggesting F. proliferatum and F. oxysporum were major pathogens of the oriental melon, inducing stem rots and vascular wilts, respectively. Oriental melon and watermelon were more susceptible to F. oxysporum than shintosa and cucumber; and cucumber was most, oriental melon and watermelon, medially, and shintosa was least susceptible to F. proliferatum, whose virulence varied among and within their phylogenetic subclades. Severe root-knot galls were formed on all the crops infected with Meloidogyne incognita; however, little indication of vascular wilts or stem and/or root rots was shown by the nematode infection. These results suggest the current fungal disease in the oriental melon may be rarely due to virulence changes of the fusarium wilt pathogen and the direct cause of the severe root-knot nematode infection, but may be potentially from other Fusarium pathogen infection that produces seemingly wilting caused by severe stem rotting.

Corn Cultivation to Reduce the Mycotoxin Contamination (곰팡이 독소 오염 경감을 위한 옥수수 재배법)

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Jung, Jingyo;Heu, Sunggi;Shim, Hyeong Kwon
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.256-261
    • /
    • 2017
  • The effects of insecticide and fungicide treatment were investigated to reduce mycotoxin contamination of corn (Zea mays L.) seeds. Deoxynivalenol and zearalenone contents were reduced in the treated seeds, but aflatoxin, ochratoxin A, fumonisin, and T-2 toxin were not effective by chemical treatments. The chemical treatment did not affect the growth of saprophyte, but inhibited the pathogenic fungi such as Fusarium verticillioides, F. graminearum and F. equiseti. Myotoxin contents at different harvesting time were compared. As the harvest time was delayed, both levels of deoxynivalenol and zearalenone and frequency of Fusarium spp. increased. However, the major nutrient contents of corn seeds were not affected by harvesting period. These results show that chemical treatments are necessary to reduce the fungal contamination of corn and harvest without delay is important as well.