• Title/Summary/Keyword: Furnace wall

Search Result 168, Processing Time 0.039 seconds

Fireside Corrosion Characteristics in Coal-Fired Boiler Tube (석탄연소중 발생되는 보일러 튜브의 화염측 부식특성)

  • Kim, Tae-Hyung;Seo, Sang-Il;Park, Ho-Young;Kim, Young-Ju
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.276-281
    • /
    • 2006
  • Although fireside corrosion of heat transfer surfaces in coal fired steam generators has been a problem to some extent for a number of tears, with the advent of low NOx firing systems these surfaces can be exposed to conditions that will exacerbate wastage rates. Numerous reports of waterwall wastage in coal fired boilers have appeared in the literature. It is believed that wastage results both from gaseous phase attack of metal surfaces and from deposition of ash and unburned fuel. Gaseous phase attack is known to occur in the presence of reducing sulfur species such as $H_2S$ and in the presence of fuel chlorine. The highest wastage rates are thought to be due to deposition of unoxidized material and the presence of fuel chlorine. Localized wall and near wall conditions that may exacerbate wastage include reducing conditions, high temperatures, high heat fluxes, and a high fraction of unoxidized material deposited. So, this study is directed at developing an advanced corrosion model in coal-fired utility boilers.

  • PDF

The required performance of the super flowing concrete for LNG (LNG tank용 초유동 콘크리트의 배합설계)

  • 권영호;전성근;백승준;이용일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.463-468
    • /
    • 1999
  • The slurry wall of Inchon LNG receiving terminal tank will be planned the super flowing concrete having properties of high strength (required strength 520kg/$\textrm{cm}^2$), no-vibrating and massive structure in the underground. For the performance of this concrete, we investigate and select all materials, the optimum mix design and sensibility test in the laboratory. As test results, we choose portland blast-furnace slag cement and lime stone powder(L.S.P) as cementitious materials, W/C 41%(W/B 35.4%), S/a 50.8% and unit volume of coasre aggregate 0.30 as optimum mix design. Also test result of the fresh and hardened concrete are satisfied with specifications of slurry wall.

  • PDF

Study on the Fire Resistance of Light Weight Inorganic Polymer Concrete Panel Wall (Inorganic Polymer Concrete를 이용한 경량패널의 내화특성에 관한 실험적 연구)

  • Hwang, Ji-Soon;Kim, Woo-Jae;Kim, Dae-Hoi;Park, Dong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.205-206
    • /
    • 2011
  • Inorganic Polymer Concrete, a type of Alkali activated cement and concrete, is known for various excellent performances, especially for better performance in the area of high temperature heat resistance(thermal characteristic) than portland cement concrete.In this study, light weight concrete panel was manufactured using this Inorganic Polymer Concrete and then evaluated for fire resistance with a small-scale heating furnace. Since the result showed excellent fire resistance, it is considered usable for manufacturing fire resistant concrete panel wall.

  • PDF

Applications and Analysis of Exterior Paints for the Curtain Wall Panel System based on the Autoclaved Lightweight Concrete(ALC) (경량기포콘크리트(ALC) 패널을 건축물 외장 커튼월에 적용을 위한 도료의 기초적 연구)

  • Lee, Yong-Soo;La, Hyun-Ju
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.3
    • /
    • pp.59-66
    • /
    • 2012
  • Autoclaved Lightweight Concrete(ALC) features such as a high performance insulation, the fire resistance, the advantage of easy handing construction, and lightweight panels applied the curtain wall system. ALC materials are certified as non-toxic environmental and eco-friendly productions. But ALC external panels mixed with blast furnace slag pounder and silica fume have to be coated with a stucco compound or plaster because of resisting the ambient environment. This study is that mixing tests to evaluate a performance analysis of exterior paints to be make-up pigments(organic or inorganic) coated with panel surface. Testing compared by KS F 2476; flow test, KS F 2426; compression strength test, KS F 2762; bond strength test. In results, the case of the inorganic binder, ratio of alumina cement : anhydrite is 90:10 to 80:20 at the highest level of intensity. In the case of the organic binder, adhesive strength rating at surface of ALC, the pullout strength is below 0.5 $N/mm^2$ but the normal concrete is over 2.0$N/mm^2$. A contents ratio of EVA resin is more than 3% and then bond strength is effectively.

Growth and point defect for $CdGa_2Se_4$single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 점결함)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.81-82
    • /
    • 2007
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C\;and\;420^{\circ}C$, respectively. After the as-grown single crystal $CdGa_2Se_4$ thin films were annealed in Cd-, Se-, and Ga -atmospheres, the origin of point defects of single crystal $CdGa_2Se_4$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd},\;V_{Se},\;Cd_{int},\;and\;Se_{int}$ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cd-atmosphere converted single crystal $CdGa_2Se_4$ thin films to an optical p-type. Also, we confirmed that Ga in $CdGa_2Se_4$/GaAs did not form the native defects because Ga in single crystal $CdGa_2Se_4$ thin films existed in the form of stable bonds.

  • PDF

Growth and Characterization of $CuInTe_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE) 법에 의한 $CuInTe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류연구)

  • Hong, Kwang-Joon;Park, Chang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.156-159
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the $CuInTe_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CuInTe_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were $610^{\circ}C\;and\;450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about $0.5{\mu}m/h$. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). From the photocurrent spectra, we have found that values of spin orbit coupling ${\Delta}So$ and crystal field splitting ${\Delta}Cr$ ware $0.283{\underline{3}}eV\;and\;0.120{\underline{0}}eV$, respectively.

  • PDF

Development of Nano Ceramic Structures for HEPA Type Breathing Wall (HEPA Filter형 숨쉬는 벽체용 나노세라믹 여재개발)

  • Kim, Jong-Won;Ahn, Young-Chull;Kim, Gil-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.274-279
    • /
    • 2008
  • In the perspective of saving energy in buildings, high performance of insulation and air tightness for improving the heating and the cooling efficiency has brought the positive effect in an economical view. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and it is also very harmful to residents because they spend over 90% of their time in the indoor area. Therefore, the ventilation is important to keep indoor environment clean and it can also save energy consumption. In this study, a HEPA type breathing wall is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. To make fine porous structures, polymer nano fibers which were made by electro spinning method are used as a precursor. The nano fibers are coated with SiO2 nano particles and finally the HEPA type breathing wall is made by sintering in the electric furnace at $300\sim500^{\circ}C$. The pressure drops of nano ceramic structure are 8.2, 25.5 and 44.9 mmAq at the face velocity of 2.0, 5.9 and 8.8 cm/s, respectively. Also the water vapor permeability is $3.6g/m^2{\cdot}h{\cdot}mmHg$. In this research, the porous nano ceramic structures are obtained and the possibility for the usage of a material for HEPA type breathing wall can be obtained.

Assessment of Coal Combustion Safety of DTF using Response Surface Method (반응표면법을 이용한 DTF의 석탄 연소 안전성 평가)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.

An Experimental Study on Slagging/Fouling Characteristics for Various Coals in a 50kWth Pulverized Coal Combustion System (50kWth미분탄 연소 시스템에서 탄종별 슬래깅 및 파울링 특성 연구)

  • Kang, Kieseop;Lee, Jaewook;Chae, Taeyoung;Ryu, Changkook;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.107-109
    • /
    • 2012
  • In Korean coal power plants, rising coal prices have recently led to the rapid utilization of low lank coals such as sub-bituminous coal with low calorific values and low ash fusion temperatures. Using these coals beyond the design range has resulted in important issues including slagging and fouling, which cause negative effects in boiler performances and unstable operations. The purpose of this study is to observe slagging and fouling characteristics resulted from burning various ranks of pulverized coals. We have tested 3 different coals: FLAME(bituminous), KCH(sub-bituminous) and MOOLARBEN(bituminous)coals in the pilot system $50kW_{th}$ scale. A stainless steel tube with preheated air inside was installed in the downstream in order to simulate water wall. Collected ash on the probe and the slag inside the furnace near burner were analyzed by SEM (scanning electron microscopy) to verify the formation degree, surface features and color changes of the pasty ash particles. Induced coupled plasma and energy dispersive X-ray spectroscopy were also performed to figure out the chemical characteristics of collected samples. As a result, KCH was observed that more slag was developed inside the walls of the furnace and on the probe than the other two kinds of coals, as shown in the calculate slagging and fouling indices as well.

  • PDF

An Experimental Study about The Effect of Solid Particle Seeding on Thermal Characteristics of Hydrogen Flame (고체 입자첨가가 수소화염의 열특성에 미치는 영향에 관한 실험적 연구)

  • Kim, Jung-Ju;Baek, Seung-Wook;Kim, Han-Seok;Choi, Joon-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1503-1512
    • /
    • 2002
  • From the view of the environmental protection against the use of fossil fuels, a great of efforts have been exerted to find an alternative energy source. Hydrogen may become an alternative However the product species of the hydrogen flame is only $H_2O$, which emits only non-luminous radiation so the radiation from it is much smaller than that for a hydrocarbon flame. In this study, the authors designed and fabricated a laboratory scale test furnace to study thermal characteristics of hydrogen-air diffusion flame. In addition. the effects of addition of reacting as welt as non-reacting solid particles were experimentally investigated. Among the total heat flux to the wall, about 75 % was occupied by radiation while 25% by convection. When the aluminum oxide (Al$_2$O$_3$) particles were added, the radiative heat flux was reduced due to heat blockage effects. On the other hand, the total as well as the radiative heat flux was increased when the carbon particles were seeded, since the overall temperature increased. The effects of swirl and excess air ratio were also examined.