• Title/Summary/Keyword: Fungicides resistance

Search Result 103, Processing Time 0.019 seconds

Epidemiology and Control of Rice Blast in Korea (한국(韓國)에서의 도열병(病) 발생(發生), 만연(蔓延)과 그 방제(防除))

  • Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.356-369
    • /
    • 1985
  • In Korea, inevitable researches for the blast control exactly started from 1927 by the organization of Office of Rural Development with the local extensive outbreak of panicle blast at Jeonlla Buk-Do Province in 1926. At present, the rice blast is still one of the most destructive and widespread diseases in spite of considerable contributions by rice scientists, particularly plant pathologists during last 55 years in Korea. Rice blast control and management are very difficult because of the marked variability in pathogenicity of the blast fungus. From the results obtained through the disease surveys during last 70 years, different 3 prevalence type of blast such as bimodal leaf-blast type, bimodal panicle-blast type and bimodal continual blast type were recognized. In generally speaking, pattern of blast outbreak is said to be characterized by severe outbreak of panicle blast after slight outbreak of leaf blast with discontinuity between leaf and panicle blast. So we have to pay much attention for successful management of panicle blast giving direct influence to rice yield. Main factors induce blast epidemic were pointed out to be breakdown of the disease resistance, nutritional unbalance such as excess application of nitrogen, delay of transplantation and longspell of rain fall by extensive surveys and researches on blast during last 70 years in Korea. The fact some of Japonica varieties such as Kokuryomiyako, Tamanishiki, Ginbozu and Pungok belong to varietal group A had been cultivated with extensive acrage over 30 years in this country should be mentioned by Korean rice scientists. Differences in field resistance between varieties in the same group are detectable and apparently small but sometimes epidemiologically significant differential effects may be found out in case of blast. Much more attention should be payed to accumulate the knowledges on field resistance for successful management of blast. Excess application of nitrogen is more effective to outbreak of panicle blast than that of leaf blast of IR varieties. In comparatively low level application of nitrogen infection rate of panicle blast of IR varieties is considerably high. Low temperature effects on outbreak of blast is very great. It results in remarkable increase of the inoculum potential on the leaf lesions and infection of panicle blast in leaf sheathes of IR varieties during the booting stage. In economic point of view, it is concluded that 5 times sprays of effective fungicides including 3 times before and 2 times after heading is good enough to control blast. We have experienced no one of control measures for blast is superior to all others. The integrated control measures was established as guideline of blast control around 1950 in Korea. This guideline must be helpful for rice growers as long as rice growing continue.

  • PDF

Toothpick-Aided Detection of Sclerotinia homoeocarpa in the Turfgrass Leaf Canopy, Thatch, and Soil in Relation to Dollar Spot Infection Centers (이쑤시개를 이용한 잔디층, 대취층, 및 토양층에서 동전마름병 전염원의 검출)

  • Lee, Jung Han;Min, Gyu Young;Shim, Gyu Yul;Kim, Dong Soo;Sang, Hyunkyu;Jung, Geunhwa;Kwak, Youn-Sig
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.376-382
    • /
    • 2015
  • Dollar spot, caused by Sclerotinia homoeocarpa, is the major disease in cool-season turfgrasses. Understanding the distribution of this pathogen in soil and thatch is important to developing disease control strategies. In this study, toothpicks were used to detect S. homoeocarpa in the turfgrass canopy, thatch, and soil at different distances from dollar spot infection centers. The effect of penetrant and contact fungicide applications with different water volumes on distribution of S. homoeocarpa was also investigated. S. homoeocarpa was detected in 100% of samples taken from the leaf canopy, 83.3% in thatch area, and 0% in the soil from within the infection center. S. homoeocarpa was isolated in 100% of samples taken from the edge of the infection center, but was only detected in 13% of the samples taken at 1.5 cm away from the infection center edge. S. homoeocarpa was isolated at a higher frequency in the propiconazole treated plots than those treated with chlorothalonil and was not detected in leaf canopy samples when either fungicides was applied with 6.78 L of water. In conclusion, the toothpick-aided detection technique has improved our understanding of S. homoeocarpa epidemiology and could be used as a diagnostic tool to detect for fungicide resistance on golf courses.

Simple Method to Discriminate the Fungicide Resistant Botrytis cinerea Strain in Tomatoes (토마토 잿빛곰팡이병균 약제저항성 간이 판별법)

  • Lee, Mun Haeng;Lee, Hee Kyoung;Kim, Sung Eun;Lee, Hwan Gu;Lee, Sun Gye;Yu, Seung Hun;Kim, Young Shik;Kim, Sang Woo;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • Grey mold infection rate in tomato was investigated with the inoculation of dead flowers on Botrytis selective media. The grey mold infection rate of flower after fruiting were higher in the order of after 45 days, after 25 days, and fruiting day with 100%, 87% and 65%, respectively. The number of infected flowers were increased with time increase after the flowering before fruiting. BSM (Botrytis selective medium) was used to check grey mold infection rate depending on the flowering stage and cultivar. Grey mold infection rate depending on the flowering stage was similar in all the beef-tomato cultivar as 1.5~5% at preflowering, 1.5~45% at flowering and 75~90% at fruiting. On the other hand, cherry tomato cultivar "KoKo" had lower infection rates of 0~3.5% at pre-flowering, 10~30% at flowering and 20~50% at fruiting. These resulted from the fact that beaf-tomato cultivar have much bigger flowers and larger amount of pollens compared to those of cherry tomato cultivar. The amounts of falling pollens of Botrytis spp. were checked for beaf-tomato cultivar and cherry tomato cultivar using BSTM. The amounts of falling pollens were increased as growth period was extended, and the amount of spores increased rapidly during the outbreak of grey mold. Twelve field trials in Buyeo and Iksan areas showed that Fluazinam, and Diethofencarb+Carbendazim were effective fungicides to control tomato grey mold, and these results were similar to those of field trials with BSTM. This is the first report of Fluazinam as a effective fungicide for the control of grey mold of tomato even though it has not been registered yet for the control of gray mold in tomato.