• Title/Summary/Keyword: Fungicide application

Search Result 155, Processing Time 0.021 seconds

Winter Wheat Grain Yield Response to Fungicide Application is Influenced by Cultivar and Rainfall

  • Byamukama, Emmanuel;Ali, Shaukat;Kleinjan, Jonathan;Yabwalo, Dalitso N.;Graham, Christopher;Caffe-Treml, Melanie;Mueller, Nathan D.;Rickertsen, John;Berzonsky, William A.
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • Winter wheat is susceptible to several fungal pathogens throughout the growing season and foliar fungicide application is one of the strategies used in the management of fungal diseases in winter wheat. However, for fungicides to be profitable, weather conditions conducive to fungal disease development should be present. To determine if winter wheat yield response to fungicide application at the flowering growth stage (Feekes 10.5.1) was related to the growing season precipitation, grain yield from fungicide treated plots was compared to non-treated plots for 19 to 30 hard red winter wheat cultivars planted at 8 site years from 2011 through 2015. At all locations, Prothioconazole + Tebuconazole or Tebuconazole alone was applied at flowering timing for the fungicide treated plots. Grain yield response (difference between treated and non-treated) ranged from 66-696 kg/ha across years and locations. Grain yield response had a positive and significant linear relationship with cumulative rainfall in May through June for the mid and top grain yield ranked cultivars ($R^2=54%$, 78%, respectively) indicating that a higher amount of accumulated rainfall in this period increased chances of getting a higher yield response from fungicide application. Cultivars treated with a fungicide had slightly higher protein content (up to 0.5%) compared to non-treated. These results indicate that application of fungicides when there is sufficient moisture in May and June may increase chances of profitability from fungicide application.

Systemic Fungicide Application for the Control of White Muscardine in Silkworm Rearing

  • Dutta, Monalisa;Nataraju, B.;Sharma, S.D.;Chandrasekharan, K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.1
    • /
    • pp.103-106
    • /
    • 2003
  • Among silkworm diseases, white muscardine is the most virulent and contagious disease caused by Beauveria bassiana and common during winter and rainy seasons. The disease is managed at present by practicing the silkworm body and rearing seat disinfection to prevent the spread of white muscardine during silkworm rearing as the available methods do not cure the silkworms against white muscardine. The use of systemic fungicide was suggested recently to control white muscardine. The present study investigated the practicability of application aspect of systemic fungicide as spray, It is observed that 3 times feeding of systemic fungicide through mulberry leaf, fed immediately after third, fourth moult and on $4^{th}$ day of final instar as most effective in suppressing the multiplication of the fungus in silkworm. Spraying of the systemic fungicide on mulberry in the rearing house, air-dried and feeding was suggested as suitable application method. Alternately the spraying of the systemic fungicide on mulberry in mulberry garden 6 hrs prior to feeding was also suggested as a method for the control of white muscardine in silkworm rearing.

Effect of Plant Population Densities on the Severity of tate Leaf Spot and Rust of Groundnut

  • Pande, S.;Rao, J.Narayana
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.271-278
    • /
    • 2002
  • The effect of five plant population densities [5 (D$_1$), 10 (D$_2$), 20 (D$_3$), 30 (D$_4$), and 40 (D$_{5}$) plants/m$^2$] of four groundnut cultivars [ICGV 86699, ICG (FDRS) 10, ICGS 11 and TMV 2] and fungicide application (Kavach, chlorothalonil) to manage late leaf spot (LLS) and rust were studied in a field experiment during the 1995 and 1996 rainy seasons. LLS and rust severities were low in fungicide sprayed plots in all the cultivars irrespective of plant densities. Severities of LLS and rust, and percentage defoliation caused by LLS were significantly more in higher plant densities (D$_4$, D$_{5}$) than in lower plant densities (D$_1$, D$_2$, D$_3$) in fungicide sprayed and unsprayed plots in all the cultivars. All the cultivars gave significantly higher haulm and pod yields in fungicide sprayed plots than in unsprayed plots. Haulm and pod yields were significantly higher in higher plant densities than in lower plant densities. A combination of higher plant densities (D$_4$, D$_{5}$) and fungicide protection against LLS and rust gave maximum yield.yield.

Development of a System for Controlling Ginseng Alternaria Leaf Blight (Alternaria panax) to Reduce Fungicide Application and Use (살균제 감량을 위한 인삼 점무늬병 방제체계의 개발)

  • Li, Xiangguo;Choi, Jae-Eul
    • Research in Plant Disease
    • /
    • v.15 no.1
    • /
    • pp.17-22
    • /
    • 2009
  • To reduce the amount of chemical fungicides and the number of spray for the control of Alternaria blight of ginseng, biofungicides were used in order to reduce the residue and ensure the safety of ginseng plants. The control efficiencies were 68.34%$\sim$73.56% against Alternaria blight in 2 times alternate spray of biofungicides and chemical fungicide at 14 days interval whereas the control efficiencies were 87.00%$\sim$89.42% in 2 times alternate spray of 3 different kinds of chemical fungicides at 14 days interval. In case of treatment combination the control efficiencies were 74.53%$\sim$87.23% in alternate spray of mixture of biofungicides and chemical fungicides at 28 days interval in all combinations except 2 kinds of combinations (Com-12 and Com-17). Therefore, the alternate application of the biofungicides and chemical fungicides or alternate application of mixture of biofungicides and chemical fungicides could reduce the amount of chemical fungicide about 75.00%$\sim$83.33%.

Residual characteristics and safety assessments of prochloraz and its metabolites in Aster yomena using QuEChERS and LC-MS/MS

  • Hyeon-Jin Lim;Young-Shin Kim;Chi-Hwan Lim
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.2
    • /
    • pp.205-216
    • /
    • 2024
  • Although Aster yomena has recently attracted attention for its potential anti-cancer, antimicrobial, and immune-boosting effects, there are concerns about residual pesticides because they are consumed in salad-like forms. This study investigated residual characteristics and human dietary risks of the imidazole fungicide prochloraz applied to the herbal medicine Aster yomena with different spray frequency and timing. Residual analysis of prochloraz and its three main metabolites (BTS44595, BTS44596, and 2,4,6-trichlorophenol) in Aster yomena samples was performed using the QuEChERS method and LC-MS/MS. Mean recovery rates of the fungicide and its metabolites were satisfactory in the range of 80.1 ± 1.2% to 108.2 ± 3.8%. The residual concentration of the fungicide calculated as the sum of prochloraz and its metabolites was the highest (4.14 mg·kg-1) in the Aster yomena sample applied three times at weekly intervals with the fungicide until immediately before harvest. The fungicide residue concentration in the Aster yomena was below the method-limit of quantification (MLOQ) when it was applied twice at the interval of 9 day until 21 days before harvest. The theoretical maximum daily intake of prochloraz, calculated based on the daily intake of Aster yomena, mean adult body weight, and the highest residue level analyzed in the this study, was safe at < 80% of the acceptable daily intake of the fungicide (0.01 mg-1·kg·bw-1·day). In conclusion, the triple application method with prochloraz at weekly intervals until the harvest day is recommended to produce safe Aster yomena from the fungicide residues and risks to humans.

Improvement and Effectiveness for Chemical Control Protocol of Sweet Persimmon Anthracnose Disease (단감 탄저병 방제법 개선을 위한 살균제 선발 및 효과)

  • Jeon, Chang Wook;Kwon, Youngho;Lee, Jung Han;Kwak, Youn-Sig
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Anthracnose, caused by Colletotrichum spp. is the most important and devastating disease in sweet persimmon production in worldwide. There is no alternative control method or resistant cultivar is available. Therefore, chemical controls are widely accepted to control the disease. Three fungicides among 16 fungicides have been selected to apply in field condition. The selected three fungicides (metconazole, dithianon and propineb) showed lower EC50 and reliable control effect in both in vitro and in vivo. According to general guide line of anthracnose disease control method recommended 8 times spay of the fungicide. In this study, we performed 8, 4, and 2 times spay of the fungicides. For 8 times application, practice spray machine has been used and for 4 and 2 time application, a recently invented spray machine was input. The fungicides have been treated from middle of June to end of August in 2014 year. Control effect of among the selected fungicides showed similar result regardless of sort of the fungicide. However, frequency of spray result showed significantly different results, 8 and 4 times fungicide application showed low and similar disease occurrence, but 2 times application showed intermediated disease occurrence between 4 times treatment and untreated control. Taken together, result showed that 4 times application with effective fungicide, mechanically advanced tool can reduced the anthracnose disease damage in sweet persimmon production.

Effect of Several Fungicides and Growth Regulators on Rice Seedling Growth and Damping-off in Seedling Boxes for Machine Transplanting (벼상자육묘(箱子育苗)에서 살균제(殺菌齊)와 생장조절제(生長調節劑) 처리(處理)가 묘생육(苗生育) 및 생리장해(生理障害)에 미치는 영향(影響))

  • Jeh, Sang Yull;Hwang, Chung Dong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.1-11
    • /
    • 1987
  • This study was conducted to evaluate the effect of several fungicides and growth regulators on rice seedling growth and damping-off in seedling boxes for machine transplanting. Fungicide treated plots were better seedling growth, shoot regrowth, rooting ability, change of moisture content than those of nontreated plot. Metalaxyl application of Samgangbyeo and SF8002 application of Nagdongdyeo apparently increased plant height, length of the third leaf and fourth leaf. And metaiaxyl application highly increased dry weight. Fungicide treated plots were highly effective in reducing the incidence of damping-off. Benzyladenine application of Samgangbye and $GA_3$ application of Nagdongbyeo apprently increased plant height. But ABA application highly decreased plant height. ABA application and aCE application resulted in highly increased rooting ability. Fungicide and $GA_3$ treated plots, Metalaxyl and growth regulator treated plots resulted in highly increased plant height. I soprothiolane and growth regulator treated plots resulted in decreased plant height. Dachigaren and lAA treated plot apprently increased dry weight and shoot dry weight/plant height. Fungicide and growth regulator treated plots were highly effective in reducing the incidence of damping-off.

  • PDF

Field Performance of a New Fungicide Ethaboxam Against Cucumber Downy Mildew, Potato Late Blight and Pepper Phytophthora Blight in Korea

  • Kim, Dal-Soo;Prak, Hyun-Cheol;Chun, Sam-Jae;Yu, Seung-Hun;Park, Kyong-Ju;Oh, Jeung-Haing;Shin, Kwang-Hoon;Koh, Young-Jin;Kim, Byung-Sup;Hahm, Young-Il;Chung, Bong-Koo
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.48-52
    • /
    • 1999
  • Ethaboxam is the first proprietary fungicide developed in Korea, registered in 1998 and commercialized in 1999 by LG Chemical Ltd., Korea. It is a derivative of aminothiazole carboxamide and formulated into 25% wettable powder for practical application in fields. Ethaboxam effectively controlled cucumber downy mildew caused by Pseudoperonospora cubensis, potato late blight caused by Phytophthora infestans, and pepper Phytophthora blight caused by P. capsici, and was superior or comparable to the commercial standards, when foliarly sprayed 3∼5 times until dripping off at approximately 7-day intervals during the growing season. Ethaboxam was required at least 125 mg/liter and 250 mg/liter for effective control of cucumber downy mildew, and potato late blight and pepper Phytophthora blight, respectively. There was not phytotoxicity observed o leaves, stems or fruits of cucumber, potato and pepper from any trial.

  • PDF

Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper (Fungicide pyraclostrobin의 고추 세균점무늬병 예방효과)

  • Kang, Beom Ryong;Lee, Jang Hoon;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.24 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • Pyraclostrobin is a broad-spectrum fungicide that inhibits mitochondrial respiration. However, it may also induce systemic resistance effective against bacterial and viral diseases. In this study, we evaluated whether pyraclostrobin enhanced resistance against the bacterial spot pathogen, Xanthomonas euvesicatora on pepper (Capsicum annuum). Although pyraclostrobin alone did not suppressed the in vitro growth of X. euvesicatoria, disease severity in pepper was significantly lower by 69% after treatments with pyraclostrobin alone. A combination of pyraclostrobin with streptomycin reduced disease by over 90% that of the control plants. The preventive control of the pyraclostrobin against bacterial spot was required application 1-3 days before pathogen inoculation. Our findings suggest that the fungicide pyraclostrobin can be used with a chemical pesticide to control bacterial leaf spot diseases in pepper.

Efficacy by Application Schedule of Fungicides before Harvest Stage for Control of Strawberry Powdery Mildew (딸기 흰가루병 방제를 위한 수확전 약제 처리 시기)

  • Nam, Myeong-Hyeon;Jung, Suck-Kee;Jang, Chang-Soon;Song, Jeong-Young;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.39-42
    • /
    • 2005
  • Powdery mildew, caused by Sphaerotheca aphanis var. aphanis, is an economically significant disease of strawberry in Korea. When powdery mildew is not controlled adequately, it often spreads rapidly through strawberry plants and damage is associated with reduced yields. Proper timing of fungicide applications is, therefore, essential for effective disease control. This study evaluated the efficacy by application schedule of fungicides before harvest stage for preventing powdery mildew in 2001-2003. The systemic fungicides, azoxystrobin, kresoxim-methyl, and cupper fungicide DBEDC were applied preventively during the first part of the cultivating season. Preventative applications of DBEDC by dipping treatment before transplanting and kresoxim-methyl by foliar spray before blooming stage were one of the most effective control schedule tested to prevent and manage this disease. This research demonstrated the significance of application time to control of powdery mildew, particularly provided elimination unnecessary sprays of agrochemicals and reduction costs for strawberry growers.