• 제목/요약/키워드: Fungal immunity

검색결과 35건 처리시간 0.027초

A Nucleolar Protein, MoRRP8 Is Required for Development and Pathogenicity in the Rice Blast Fungus

  • Minji Kim;Song Hee Lee;Junhyun Jeon
    • Mycobiology
    • /
    • 제51권5호
    • /
    • pp.273-280
    • /
    • 2023
  • The nucleolus is the largest, membrane-less organelle within the nucleus of eukaryotic cell that plays a critical role in rRNA transcription and assembly of ribosomes. Recently, the nucleolus has been shown to be implicated in an array of processes including the formation of signal recognition particles and response to cellular stress. Such diverse functions of nucleolus are mediated by nucleolar proteins. In this study, we characterized a gene coding a putative protein containing a nucleolar localization sequence (NoLS) in the rice blast fungus, Magnaporthe oryzae. Phylogenetic and domain analysis suggested that the protein is orthologous to Rrp8 in Saccharomyces cerevisiae. MoRRP8-GFP (translational fusion of MoRRP8 with green fluorescence protein) co-localizes with a nucleolar marker protein, MoNOP1 fused to red fluorescence protein (RFP), indicating that MoRRP8 is a nucleolar protein. Deletion of the MoRRP8 gene caused a reduction in vegetative growth and impinged largely on asexual sporulation. Although the asexual spores of DMorrp8 were morphologically indistinguishable from those of wild-type, they showed delay in germination and reduction in appressorium formation. Our pathogenicity assay revealed that the MoRRP8 is required for full virulence and growth within host plants. Taken together, these results suggest that nucleolar processes mediated by MoRRP8 is pivotal for fungal development and pathogenesis.

A Human Fungal Pathogen Cryptococcus neoformans Expresses Three Distinct Iron Permease Homologs

  • Han, Kyunghwan;Do, Eunsoo;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1644-1652
    • /
    • 2012
  • Iron plays a key role in host-pathogen interactions. Microbial pathogens require iron for survival and virulence, whereas mammalian hosts sequester and withhold iron as a means of nutritional immunity. We previously identified two paralogous genes, CFT1 and CFT2, which encode homologs of a fungal iron permease, Cft1 and Cft2, respectively, in the human fungal pathogen Cryptococcus neoformans. Cft1 was shown to play a role in the high-affinity reductive iron uptake system, and was required for transferrin utilization and full virulence in mammalian hosts. However, no role of Cft2 has been suggested yet. Here, we identified the third gene, CFT3, that produces an additional fungal iron permease homolog in C. neoformans, and we also generated the cft3 mutant for functional characterization. We aimed to reveal distinct functions of Cft1, Cft2 and Cft3 by analyzing phenotypes of the mutants lacking CFT1, CFT2 and CFT3, respectively. The endogenous promoter of CFT1, CFT2 and CFT3 was replaced with the inducible GAL7 promoter in the wild-type strain or in the cft1 mutant for gain-of-function analysis. Using these strains, we were able to find that CFT2 is required for growth in low-iron conditions in the absence of CFT1 and that overexpression of CFT2 compensates for deficiency of the cft1 mutant in iron uptake and various cellular stress conditions. However, unlike CFT2, no clear phenotypic characteristic of the cft3 mutant and the strain overexpressing CFT3 was observed. Overall, our data suggested a redundant role of Cft2 in the high-affinity iron uptake and stress responses in C. neoformans.

피부진균증의 한의학적 고찰 (Study on Cutaneous Mycoses in Oriental Medicine)

  • 차은이;강정수
    • 동의생리병리학회지
    • /
    • 제20권4호
    • /
    • pp.799-806
    • /
    • 2006
  • Fungi cause a number of plant and animal diseases. Because fungi are more chemically and genetically similar to animals than other organisms, this makes fungal diseases very difficult to treat. Human fungal infections are uncommon in normally healthy persons, being confined to conditions such as candidiasis (thrush) and dermatophyte skin infections such as athlete's foot. However, in the immunocompromised host, a variety of normally mild or nonpathogenic fungi can cause potentially fatal infections. Furthermore, the relative ease with which people can now visit 'exotic' countries provides the means for unusual fungal infections to be imported into this country. Fungal infections or mycoses are classified depending on the degree of tissue involvement and mode of entry into the host. These are Cutaneous, Subcutaneous, Systemic, and Opportunistic. As listed above, in superficial mycoses infection is localised to the skin, the hair, and the nails. An example is 'ringworm' or 'tinea', an infection of the skin by a dermatophyte. Ringworm refers to the characteristic central clearing that often occurs in dermatophyte infections of the skin. Dermatophyte members of the genera Trycophyton, Microsporum and Epidermophyton are responsible for the disease. Tinea can infect various sites of the body, including the scalp (tinea capitis), the beard (tinea barbae) the foot (tinea pedis: 'athlete's foot') and the groin (tinea cruris). All occur in the United Kingdom although tinea infections, other than pedis, are now rare. Candids albicans is a yeast causing candidiasis or 'thrush' in humans. As a superficial mycoses, candidiasis typically infects the mouth or vagina. C. albicans is part of the normal flora of the vagina and gastrointestinal tract and is termed a 'commensal' However, during times of ill health or impaired immunity the balance can alter and the organism multiplies to cause disease. Antibiotic treatment can also alter the normal bacterial flora allowing C. albicans to flourish. If we study mycoses of the orient medicine, we can improve the medical skills about mycoses.

Phytobiome as a Potential Factor in Nitrogen-Induced Susceptibility to the Rice Blast Disease

  • Jeon, Junhyun
    • 식물병연구
    • /
    • 제25권3호
    • /
    • pp.103-107
    • /
    • 2019
  • Roles of nutrients in controlling plant diseases have been documented for a long time. Among the nutrients having impact on susceptibility/resistance to crop diseases, nitrogen is one of the most important nutrients for plant growth and development. In rice plants, excess nitrogen via fertilization in agricultural systems is known to increase susceptibility to the rice blast disease. Mechanisms underlying such phenomenon, despite its implication in yield and sustainable agriculture, have not been fully elucidated yet. A few research efforts attempted to link nitrogen-induced susceptibility to concomitant changes in rice plant and rice blast fungus in response to excess nitrogen. However, recent studies focusing on phytobiome are offering new insights into effects of nitrogen on interaction between plants and pathogens. In this review, I will first briefly describe importance of nitrogen as a key nutrient for plants and what changes excess nitrogen can bring about in rice and the fungal pathogen. Next, I will highlight some of the recent phytobiome studies relevant to nitrogen utilization and immunity of plants. Finally, I propose the hypothesis that changes in phytobiome upon excessive nitrogen fertilization contribute to nitrogen-induced susceptibility, and discuss empirical evidences that are needed to support the hypothesis.

Large-Scale Screening of the Plant Extracts for Antifungal Activity against the Plant Pathogenic Fungi

  • Song Hee, Lee;Young Taek, Oh;Do-Yeon, Lee;Eunbyeol, Cho;Byung Su, Hwang;Junhyun, Jeon
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.685-691
    • /
    • 2022
  • Plants produce chemicals of immense diversity that provide great opportunities for development of new antifungal compounds. In search for environment-friendly alternatives to the fungicide of current use, we screened plant extracts obtained from more than eight hundred plant materials collected in Korea for their antifungal activity against the model plant pathogenic fungus, Magnaporthe oryzae. This initial screening identified antifungal activities from the eleven plant extract samples, among which nine showed reproducibility in the follow-up screening. These nine samples were able to suppress not only M. oryzae but also other fungal pathogens. Interestingly, the plant extracts obtained from Actinostemma lobatum comprised five out of eight samples, and were the most effective in their antifungal activity. We found that butanol fraction of the A. lobatum extract is the most potent. Identification and characterization of antifungal substances in the A. lobatum extracts would provide the promising lead compounds for new fungicide.

새로운 생물적 방제 전략: 미생물 인자 유래 식물면역 유도 (Augmenting Plant Immune Responses and Biological Control by Microbial Determinants)

  • 이상무;정준휘;류충민
    • 식물병연구
    • /
    • 제21권3호
    • /
    • pp.161-179
    • /
    • 2015
  • 식물은 다양한 병원성 미생물에 대하여 효과적인 방어 기제를 발전시켜 왔다. 최근 유전체와 다중 오믹스 기술의 발전은 우리에게 미생물 인자에 의한 식물 면역을 폭넓게 이해할 수 있는 단초를 제공해 주었다. 하지만 아직까지는 이러한 기술을 병 방제 전략에 이용한 적은 많지 않다. 그래서 본 리뷰에서 식물 면역의 기본 개념을 소개하고 최근 얻어진 결과들을 소개하였다. 덧붙여 이미 논문에서 발표된 진균, 세균, 바이러스 유래 결정인자에 의한 생물적 방제 가능한 방법에 대해 기술하였다. 특히 미생물 결정인자인 chitin, glucan, LPS/EPS, 미생물분자패턴, 항생제, 식물유사호르몬, AHLs, harpin, 비타민, 휘발성물질에 대한 결과를 자세하게 기술하였다. 이 리뷰를 통하여 많은 과학자들과 농민들이 미생물 결정인자 기반의 생물적 방제에 대한 지식이 폭넓어지고, 다양한 미생물 결정 인자가 앞으로 농업현장의 종합적인 병방제 전략의 하나로 자리매김하기를 바란다.

Analysis of Rice Blast Infection and Resistance-inducing Mechanisms via Effectors Secreted from Magnaporthe oryzae

  • Saitoh, Hiromasa;H, Kanzaki;K, Fujisaki;R, Terauchi
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.61-61
    • /
    • 2015
  • Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The rice - M. oryzae pathosystem has become a model in the study of plant - fungal interactions due to its economic importance and accumulating knowledge. During the evolutionary arms race with M. oryzae, rice plants evolved a repertoire of Resistance (R) genes to protect themselves from diseases in a gene-for-gene fashion. M. oryzae secretes a battery of small effector proteins to manipulate host functions for its successful infection, and some of them are recognized by host R proteins as avirulence effectors (AVR), which turns on strong immunity. Therefore, the analysis of interactions between AVRs and their cognate R proteins provide crucial insights into the molecular basis of plant - fungal interactions. Rice blast resistance genes Pik, Pia, Pii comprise pairs of protein-coding ORFs, Pik-1 and Pik-2, RGA4 and RGA5, Pii-1 and Pii-2, respectively. In all three cases, the paired genes are tightly linked and oriented to the opposite directions. In the AVR-Pik/Pik interaction, it has been unraveled that AVR-Pik binds to the N-terminal coiled-coil domain of Pik-1. RGA4 and RGA5 are necessary and sufficient to mediate Pia resistance and recognize the M. oryzae effectors AVR-Pia and AVR1-CO39. A domain at the C-terminus of RGA5 characterized by a heavy metal associated domain was identified as the AVR-binding domain of RGA5. Similarly, physical interactions among Pii-1, Pii-2 and AVR-Pii are being analyzed.

  • PDF

Dectin-1 Stimulation Selectively Reinforces LPS-driven IgG1 Production by Mouse B Cells

  • Seo, Beom-Seok;Lee, Sang-Hoon;Lee, Ju-Eon;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.205-212
    • /
    • 2013
  • Dectin-1, which specifically recognizes ${\beta}$-glucan of fungal cell walls, is a non-Toll-like receptor (TLR) pattern recognition receptor and a representative of C-type lectin receptors (CLRs). The importance of Dectin-1 in innate immune cells, such as dendritic cells and macrophages, has previously been well studied. However, the function of Dectin-1 in B cells is very poorly understood. To determine the role of Dectin-1 in B cell activation, we first investigated whether mouse B cells express Dectin-1 and then assessed the effect of Dectin-1 stimulation on B cell proliferation and antibody production. Mouse B cells express mRNAs encoding CLRs, including Dectin-1, and surface Dectin-1 was expressed in B cells of C57BL/6 rather than BALB/c strain. Dectin-1 agonists, heat-killed Candida albicans (HKCA) and heat-killed Saccharomyces cerevisiae (HKSC), alone induced B cell proliferation but not antibody production. Interestingly, HKSC, HKCA, and depleted zymosan (a selective Dectin-1 agonist) selectively enhanced LPS-driven IgG1 production. Taken together, these results suggest that, during fungal infection, ${\beta}$-glucan-stimulated Dectin-1 may cooperate with TLR4 to specifically enhance IgG1 production by mouse B cells.

Immunomodulatory effects of phytogenics in chickens and pigs - A review

  • Huang, C.M.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권5호
    • /
    • pp.617-627
    • /
    • 2018
  • Environmental stressors like pathogens and toxins may depress the animal immune system through invasion of the gastrointestinal tract (GIT) tract, where they may impair performance and production, as well as lead to increased mortality rates. Therefore, protection of the GIT tract and improving animal health are top priorities in animal production. Being natural-sourced materials, phytochemicals are potential feed additives possessing multiple functions, including: anti-inflammatory, anti-fungal, anti-viral and antioxidative properties. This paper focuses on immunity-related physiological parameters regulated by phytochemicals, such as carvacrol, cinnamaldehyde, curcumin, and thymol; many studies have proven that these phytochemicals can improve animal performance and production. On the molecular level, the impact of inflammatory gene expression on underlying mechanisms was also examined, as were the effects of environmental stimuli and phytochemicals in initiating nuclear factor kappa B and mitogen-activated protein kinases signaling pathways and improving health conditions.

Overexpression of AtCAF1, CCR4-associated factor 1 homologue in Arabidopsis thaliana, negatively regulates wounding-mediated disease resistance

  • Kwon, Tack-Min;Yi, Young-Byung;Nam, Jae-Sung
    • Journal of Plant Biotechnology
    • /
    • 제38권4호
    • /
    • pp.278-284
    • /
    • 2011
  • The CCR4-CAF1-NOT complex-mediated degradation of mRNA is a fundamental aspect of gene regulation in eukaryotes. We herein examined the role of AtCAF1 in the innate immune and wound responses of plants. Our results showed that overexpression of AtCAF1 significantly downregulated the transcript level of EFR but not FLS2 and BRI1, as well as abolished up-regulated expression pattern of EFR in response to wounding. Consistently, Agrobacteriummediated transient expression of GUS was highly enhanced in the transgenic plants overexpressing AtCAF. Furthermore, JA responsive genes were down-regulated by overexpression of AtCAF, causing the transgenic plants overexpressing AtCAF more susceptible to necrotrophic fungal pathogen, Botrytis cinerea. These results suggest that The CCR4-CAF1-NOT complex-mediated degradation of mRNA negatively regulates wounding-mediated disease resistance in Arabidopsis thaliana.