• 제목/요약/키워드: Fungal gene

검색결과 423건 처리시간 0.024초

Identification and Characterization of Pathogenic and Endophytic Fungal Species Associated with Pokkah Boeng Disease of Sugarcane

  • Hilton, Angelyn;Zhang, Huanming;Yu, Wenying;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.238-248
    • /
    • 2017
  • Pokkah Boeng is a serious disease of sugarcane, which can lead to devastating yield losses in crop-producing regions, including southern China. However, there is still uncertainty about the causal agent of the disease. Our aim was to isolate and characterize the pathogen through morphological, physiological, and molecular analyses. We isolated sugarcane-colonizing fungi in Fujian, China. Isolated fungi were first assessed for their cell wall degrading enzyme capabilities, and five isolates were identified for further analysis. Internal transcribed spacer sequencing revealed that these five strains are Fusarium, Alternaria, Phoma, Phomopsis, and Epicoccum. The Fusarium isolate was further identified as F. verticillioides after Calmodulin and EF-$1{\alpha}$ gene sequencing and microscopic morphology study. Pathogenicity assay confirmed that F. verticillioides was directly responsible for disease on sugarcane. Co-inoculation of F. verticillioides with other isolated fungi did not lead to a significant difference in disease severity, refuting the idea that other cellulolytic fungi can increase disease severity as an endophyte. This is the first report characterizing pathogenic F. verticillioides on sugarcane in southern China.

Characterization of Chryseobacterium aquaticum Strain PUPC1 Producing a Novel Antifungal Protease from Rice Rhizosphere Soil

  • Gandhi Pragash, M.;Narayanan, K. Badri;Naik, P. Ravindra;Sakthivel, N.
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.99-107
    • /
    • 2009
  • Strain PUPC1 produces an antifungal protease as well as plant growth promoting enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phosphatase. Morphological, cultural, and physiological characteristics as well as 16S rRNA gene-sequence-based phylogenetic analysis confirmed the taxonomic affiliation of PUPC1 as Chryseobacterium aquaticum. The optimum growth of PUPC1 was observed at pH 6.0 and $30^{\circ}C$, and maximum protease production was observed in medium B amended with 1% tryptone, 0.5% sucrose, and 0.005% $MnCl_2$. The protease was purified by ammonium sulfate precipitation, Sephadex G-75 gel filtration chromatography, and electroelution from preparative SDS-PAGE. The protease had a molecular mass of 18.5 kDa. The optimum pH and temperature stability of the protease were pH 5.0-10.0 and temperature $40-70^{\circ}C$. Chryseobacterium aquaticum PUPC1 and its protease showed a broad-spectrum antifungal activity against phytopathogenic fungi. Strain PUPC1 also exhibited plant growth promoting traits. The objective of the present investigation was to isolate a strain for agricultural application for plant growth promotion and biocontrol of fungal diseases.

다발성 골 융해를 동반한 림프종 증례 (A Case of B Cell Lymphoma Presenting with Multiple Osteolysis in a Juvenile Golden Retriever)

  • 최지혜;이진수;김현욱;최을수
    • 한국임상수의학회지
    • /
    • 제29권1호
    • /
    • pp.98-102
    • /
    • 2012
  • A 1.5-year-old male Golden Retriever was presented with worsening lameness of two month duration. Abnomral findings of blood works and serum chemistry included anemia, thrombocytopenia, hypercalcemia and hyperglobulinemia. Radiography revealed osteolysis of polyostotic regions including right femur and tibia, bilateral ilium, and spinous processes from the 13th thoracic vertebra to 5th lumbar vertebra. Enlarged multiple lymph nodes and mixed echo pattern of muscular region ventral to vertebra were observed with ultrasonography. Because concentrations of both parathyroid hormone and parathyroid hormone related peptide were all within reference ranges, humoral hypercalcemia by tumor was ruled out and extensive osteolysis was considered as the cause of hypercalcemia. Based on radiographic and ultrasonographic study, lymphoma, multiple myeloma and osteomyelitis were included in differential diagnosis. Fungal serologic test was negative. Monoclonal gammopathy was not found on serum protein electrophoresis. Cytological and histopathological examinations of the lytic lesions revealed neoplastic lymphoid proliferation, and B cell type clonal expansion was detected by polymerase chain reaction for the antigen receptor gene rearrangement. The case was diagnosed as B cell lymphoma involving polyostotic regions.

Invesigation of Functional Roles of a Protein Kinase in a Fungal Plant Pathogen, Magnaporthe oryzae

  • Han, Joon-Hee;Shin, Jong-Hwan;Kim, Kyoung Su
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.43-43
    • /
    • 2014
  • The rice blast disease caused by of Magnaporthe oryzae is one of the most destructive diseases of rice. By the microarray analysis, we profiled expression changes of genes during conidiation and found out many putative genes that are up-regulated. Among those, we first selected MGG_06399 encoding a dual-specificity tyrosine-regulated protein kinase (DYRK), homologous to YAK1 in yeast. To investigate functional roles of MoYAK1, We made ${\Delta}Moyak1$ mutants by homology dependent gene replacement. The deletion mutant showed a remarkable reduction in conidiation and produced abnormally shaped conidia smaller than those of wild type. The conidia form ${\Delta}Moyak1$ were able to develop a germ tube, but failed to form apppressoria on a hydrophobic coverslip. The ${\Delta}Moyak1$ formed appressria on a hydrophobic cover slip when exogenous cAMP was induced, but the appressoria shape was abnormal. The ${\Delta}Moyak1$ also formed appressoria abberent in shape on onion epidermis and rice sheaths and failed to penetrate the surface of the plants. These data indicate that MoYAK1 is associated with cAMP/PKA pathway and important for conidiation, appressorial formation and pathogenic development in Magnaporthe oryzae. Detailed characterization of MoYAK1 will be presented.

  • PDF

먹물버섯의 생성.자가소화 과정에서 laccase 및 chitinase의 발현 (Chitinase and Laccase Expression during the Fruit Body Development in Coprinellus Congergatus)

  • 김윤정;박혜연;조정원;최형태
    • 미생물학회지
    • /
    • 제42권3호
    • /
    • pp.235-237
    • /
    • 2006
  • 먹물버섯은 버섯 시원체로부터 버섯이 성숙되는 과정에서 자가소화가 일어나 먹물이라 불리는 검은 액체를 생성한다. 이 과정에서 멜라닌을 생성하는 laccase, 균류 세포벽 성분의 하나인 키틴을 분해하는 chitinase의 관련을 분석하고자 Northern hybridization 방법을 이용하여 유전자의 발현을 분석하였다. 시원체가 생성되고 버섯이 성숙되어 먹물을 생성하는 시기에 따라 멜라닌색소 생성 효소인 laccase와 킨틴분해효소인 chitinase의 발현이 증가하는 것이 확인되었다.

Antagonistic Evaluation of Chromobacterium sp. JH7 for Biological Control of Ginseng Root Rot Caused by Cylindrocarpon destructans

  • Han, Joon-Hee;Park, Gi-Chang;Kim, Kyoung Su
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.370-378
    • /
    • 2017
  • Cylindrocarpon destructans is an ascomycete soil-borne pathogen that causes ginseng root rot. To identify effective biocontrol agents, we isolated several bacteria from ginseng cultivation soil and evaluated their antifungal activity. Among the isolated bacteria, one isolate (named JH7) was selected for its high antibiotic activity and was further examined for antagonism against fungal pathogens. Strain JH7 was identified as a Chromobacterium sp. using phylogenetic analysis based on 16S rRNA gene sequences. This strain was shown to produce antimicrobial molecules, including chitinases and proteases, but not cellulases. Additionally, the ability of JH7 to produce siderophore and solubilize insoluble phosphate supports its antagonistic and beneficial traits for plant growth. The JH7 strain suppressed the conidiation, conidial germination, and chlamydospore formation of C. destructans. Furthermore, the JH7 strain inhibited other plant pathogenic fungi. Thus, it provides a basis for developing a biocontrol agent for ginseng cultivation.

Phylogenetic Status of Two Undescribed Zygomycete Species from Korea: Actinomucor elegans and Mucor minutus

  • Nguyen, Thuong T.T.;Jung, Hee-Young;Lee, Youn Su;Voigt, Kerstin;Lee, Hyang Burm
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.344-352
    • /
    • 2017
  • During a survey of fungal diversity of the order Mucorales, three zygomycete isolates, CNUFC-YR113-1, CNUFC-KNU16-7, and CNUFC-BS1-1 were isolated from freshwater and soil samples in Korea. The strains were analyzed both morphologically and phylogenetically based on internal transcribed spacer and 28S rDNA gene sequences. Based on their morphology and phylogeny, the CNUFC-YR113-1 and CNUFC-KNU16-7 isolates were identified as Actinomucor elegans, and CNUFC-BS1-1 was identified as Mucor minutus. To the best of our knowledge, the species A. elegans and M. minutus, belonging to an undiscovered taxon, have not been previously described in Korea.

Metabolic Engineering of Saccharomyces cerevisiae for Redox Balance of Xylose Fermentation

  • Kim, Soo Rin;Jin, Yong-Su
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권4호
    • /
    • pp.199-202
    • /
    • 2014
  • The bioconversion of cellulosic biomass hydrolyzates consisting mainly of glucose and xylose requires the use of engineered Saccharomyces cerevisiae expressing a heterologous xylose pathway. However, there is concern that a fungal xylose pathway consisting of NADPH-specific xylose reductase (XR) and $NAD^+$-specific xylitol dehydrogenase (XDH) may result in a cellular redox imbalance. However, the glycerol biosynthesis and glycerol degradation pathways of S. cerevisiae, termed here as the glycerol cycle, has the potential to balance the cofactor requirements for xylose metabolism, as it produces NADPH by consuming NADH at the expense of one mole of ATP. Therefore, this study tested if the glycerol cycle could improve the xylose metabolism of engineered S. cerevisiae by cofactor balancing, as predicted by an in-silico analysis using elementary flux mode (EFM). When the GPD1 gene, the first step of the glycerol cycle, was overexpressed in the XR/XDH-expressing S. cerevisiae, the glycerol production significantly increased, while the xylitol and ethanol yields became negligible. The reduced xylitol yield suggests that enough $NAD^+$ was supplied for XDH by the glycerol cycle. However, the GPD1 overexpression completely shifted the carbon flux from ethanol to glycerol. Thus, moderate expression of GPD1 may be necessary to achieve improved ethanol production through the cofactor balancing.

New Records of Aspergillus allahabadii and Penicillium sizovae from Crop Field Soil in Korea

  • Tagele, Setu Bazie;Adhikari, Mahesh;Gurung, Sun Kumar;Lee, Hyun Gu;Kim, Sang Woo;Kim, Hyun Seung;Ju, Han Jun;Gwon, Byeong Heon;Kosol, San;Lee, Hyang Burm;Lee, Youn Su
    • Mycobiology
    • /
    • 제46권4호
    • /
    • pp.297-304
    • /
    • 2018
  • Two new records of Trichocomaceae, namely Aspergillus allahabadii and Penicillium sizovae, were isolated in 2016 during a survey of fungal diversity in different crop fields locations in Gyeongnam, Korea. These species were identified based on morphological characters and phylogenetic analysis using internal transcribed spacer region and ${\beta}-tubulin$-encoding gene sequence data. A. allahabadii and P. sizovae have not yet been reported in Korea. Thus, this is the first report of these species in Korea, and their descriptions as well as details of their morphological characters are presented.

제주도에 서식하는 식물 잎에서 분리된 6종의 국내 미기록 내생균 보고 (Characterization of Six Novel Endophytic Fungi Isolated from Leaves of Plants Inhabiting Jeju Island)

  • 박혁;최영준;엄안흠
    • 한국균학회지
    • /
    • 제46권4호
    • /
    • pp.405-414
    • /
    • 2018
  • 제주도에 서식하는 다양한 식물의 잎에서 내생균을 분리하였다. 분리된 균주들은 형태적 특성 및 internal transcribed spacer, large subunit rDNA 영역 및 beta-tubulin rDNA 유전자의 염기서열의 계통 분석을 통해 종을 동정하였다. 그 결과 6종의 국내 미기록 내생균을 확인하였고, 확인된 종은 각각 Diaporthe goulteri, Diaporthe vaccini, Rhizosphaera pini, Valsa friesii, Xylaria primorskensis, Zalerion arboricola 이다. 확인된 6종의 미기록 내생균 균주의 형태적 특성 및 염기서열 계통분석의 결과에 대해 기술하였다.