• Title/Summary/Keyword: Fungal fermentation

Search Result 174, Processing Time 0.029 seconds

Effects of Supplementation of Eucalyptus (E. Camaldulensis) Leaf Meal on Feed Intake and Rumen Fermentation Efficiency in Swamp Buffaloes

  • Thao, N.T.;Wanapat, M.;Kang, S.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.951-957
    • /
    • 2015
  • Four rumen fistulated swamp buffaloes were randomly assigned according to a $4{\times}4$ Latin square design to investigate the effects of Eucalyptus (E. Camaldulensis) leaf meal (ELM) supplementation as a rumen enhancer on feed intake and rumen fermentation characteristics. The dietary treatments were as follows: T1 = 0 g ELM/hd/d; T2 = 40 g ELM/hd/d; T3 = 80 g ELM/hd/d; T4 = 120 g ELM/hd/d, respectively. Experimental animals were kept in individual pens and concentrate was offered at 0.3% BW while rice straw was fed ad libitum. The results revealed that voluntary feed intake and digestion coefficients of nutrients were similar among treatments. Ruminal pH, temperature and blood urea nitrogen concentrations were not affected by ELM supplementation; however, ELM supplementation resulted in lower concentration of ruminal ammonia nitrogen. Total volatile fatty acids, propionate concentration increased with the increasing level of EML (p<0.05) while the proportion of acetate was decreased (p<0.05). Methane production was linearly decreased (p<0.05) with the increasing level of ELM supplementation. Protozoa count and proteolytic bacteria population were reduced (p<0.05) while fungal zoospores and total viable bacteria, amylolytic, cellulolytic bacteria were unchanged. In addition, nitrogen utilization and microbial protein synthesis tended to increase by the dietary treatments. Based on the present findings, it is suggested that ELM could modify the rumen fermentation and is potentially used as a rumen enhancer in methane mitigation and rumen fermentation efficiency.

Rumen fermentation and microbial diversity of sheep fed a high-concentrate diet supplemented with hydroethanolic extract of walnut green husks

  • Huan Wei;Jiancheng Liu;Mengjian Liu;Huiling Zhang;Yong Chen
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.655-667
    • /
    • 2024
  • Objective: This study aimed to assess the impact of a hydroethanolic extract of walnut green husks (WGH) on rumen fermentation and the diversity of bacteria, methanogenic archaea, and fungi in sheep fed a high-concentrate diet. Methods: Five healthy small-tailed Han ewes with permanent rumen fistula were selected and housed in individual pens. This study adopted a self-controlled and crossover design with a control period and an experimental period. During the control period, the animals were fed a basal diet (with a ratio of concentrate to roughage of 65:35), while during the treatment period, the animals were fed the basal diet supplemented with 0.5% hydroethanolic extract of WGH. Fermentation parameters, digestive enzyme activities, and microbial diversity in rumen fluid were analyzed. Results: Supplementation of hydroethanolic extract of WGH had no significant effect on feed intake, concentrations of total volatile fatty acids, isovalerate, ammonia nitrogen, and microbial protein (p>0.05). However, the ruminal pH, concentrations of acetate, butyrate and isobutyrate, the ratio of acetate to propionate, protozoa count, and the activities of filter paper cellulase and cellobiase were significantly increased (p<0.05), while concentrations of propionate and valerate were significantly decreased (p<0.05). Moreover, 16S rRNA gene sequencing revealed that the relative abundance of rumen bacteria Christensenellaceae R7 group, Saccharofermentans, and Ruminococcaceae NK4A214 group were significantly increased, while Ruminococcus gauvreauii group, Prevotella 7 were significantly decreased (p<0.05). The relative abundance of the fungus Pseudomonas significantly increased, while Basidiomycota, Fusarium, and Alternaria significantly decreased (p<0.05). However, there was no significant change in the community structure of methanogenic archaea. Conclusion: Supplementation of hydroethanolic extract of WGH to a high-concentrate diet improved the ruminal fermentation, altered the structure of ruminal bacterial and fungal communities, and exhibited beneficial effects in alleviating subacute rumen acidosis of sheep.

Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique

  • Polyorach, S.;Wanapat, M.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.36-45
    • /
    • 2014
  • The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a $2{\times}5$ factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and $C_3$ while $C_2$, $C_2:C_3$ and $CH_4$ production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, $C_3$ and $NH_3$-N, but decreasing the $C_2$, $C_2:C_3$ and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F. succinogenes, R. flavefaciens, R. albus, methanogens and protozoal population were decreased (p<0.01) with decreasing R:C ratio. In conclusion, YEFECAP has a potential for use as a protein source for improving rumen fermentation efficiency in ruminants.

Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP

  • Zhao, Xinshan;Huang, Xianjun;Yao, Juntao;Zhou, Yue;Jia, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.803-813
    • /
    • 2015
  • The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25℃, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55℃. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.

Effect of Medium Components on the Production of Cyclosporin A by Immobilized Fungal Cell, Tolypocladium inflatum (배지성분이 고정화 곰팡이 세포를 이용한 Cyclosporin A 생산에 미치는 영향)

  • 이태호;장용근전계택
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.613-621
    • /
    • 1996
  • The effects of important medium components such as carbon, nitrogen sources and amino acids on the production of cyclosporin A(CyA) were investigated in an immobilized fungal cell fermentation using Tolypocladium inflatum. As carbon sources in the synthetic medium, fructose and maltose stimulated CyA production remarkably compared to glucose when ammonium sulfate was supplemented as a nitrogen source. In the absence of ammonium sulfate in the medium, however, CyA biosynthesis was reduced considerably without regard to C-sources tested. Ammonium sulfate was found to be the best N-source, and also ammonium phosphate and ammonium citrate showed some positive effects on CyA production. Optimum concentration of ammonium sulfate was 10g/L, and supplementation of ammonium sulfate at the start of fermentation was found to be the most efficacious for maximal production of CyA. Among the constituent amino acids of cyclic peptide, CyA, L-valine had the most significant effect on the biosynthesis of CyA, and maximum CyA production was observed when 10 g/L of L-valine was initially added.

  • PDF

Measurement of Ochratoxin A and Isolation of the fungi producing Ochratoxin A from Korean traditional fermented soybean foodstuffs (전통 대두발효식품(醱酵食品)중에 존재하는 Ochratoxin A 생산균(菌) 분리(分離)와 Ochratoxin A량 측정)

  • Kang, Sung-Chul;Lee, Sang-Sun;Shin, Hyun-Kil;Kim, Joung-Bae
    • The Korean Journal of Mycology
    • /
    • v.19 no.2
    • /
    • pp.148-155
    • /
    • 1991
  • Fungal ochratoxin A wes extracted and measured from the Korean traditional and fermented soybean foodstuffs (12 samples of Maeju, 28 samples of Dwangjang and 28 samples of Kangjang) collected from the whole nation wide regions. The various fungi were isolated from the foodstuffs and they were also examined whether the isolates produce ochratoxin A (OA) under the artificial conditions or not. Determinations of OA produced by the fungi were done with the antibody-attached CIA method, which was accurate or sensitive at the range of 20 pg per sample with a ninty percent recovery. Out of the 222 fungal isolates, 39 isolates produced the OA under the artificial conditions, and were identified as species of Aspergillus, Penicillium, Paecilom­yces or other genera. The OA detected in all soybean foodstuffs was presumed to be originated from the first fermentation step of maeju.

  • PDF

Experimental Manufacture of Acorn Wine by Fungal Tannase (미생물(微生物) Tannase를 이용한 도토리주(酒)의 실험적(實驗的) 제조(製造))

  • Chae, Soo-Kyu;Yu, Tai-Jong
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.326-332
    • /
    • 1983
  • Acorn wine was manufactured experimentally with koji inoculated the strain producing acorn tannin hydrolyzing enzyme in order to apply fungal tannase to food processing. Starch value of several Korean acorns was found to be 72.84 and the acorns were worthy of use as a carbohydrate food. Mixed koji was prepared by combination of rice and acorn powder at a ratio of 50to 50 and inoculation of Aspergillus oryzae producing amylase and Aspergillus sp. AN-11 producing tannase into the mixture in order to hydrolyze efficiently acorn tannin inhibiting alcohol fermentation in the medium, and then the mixed koji was used as a suitable koji to manufacture acorn wine. Acorn wine brewed with medium of the acorn powder treated with water and cooked and the mixed koji prepared was superior about two times to that brewed with medium of untreated acorn powder and general koji with respect to the rate of alcohol production and sugar fermentation during the 1st and 2nd brewing.

  • PDF

The Mycobiota of Air Inside and Outside the Meju Fermentation Room and the Origin of Meju Fungi

  • Kim, Dae-Ho;Kim, Sun-Hwa;Kwon, Soon-wo;Lee, Jong-Kyu;Hong, Seung-Beom
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.258-265
    • /
    • 2015
  • The fungi on Meju are known to play an important role as degrader of macromolecule of soybeans. In order to elucidate the origin of fungi on traditional Meju, mycobiota of the air both inside and outside traditional Meju fermentation rooms was examined. From 11 samples of air collected from inside and outside of 7 Meju fermentation rooms, 37 genera and 90 species of fungi were identified. In outside air of the fermentation room, Cladosporium sp. and Cladosporium cladosporioides were the dominant species, followed by Cladosporium tenuissimum, Eurotium sp., Phoma sp., Sistotrema brinkmannii, Alternaria sp., Aspergillus fumigatus, Schizophyllum commune, and Penicillium glabrum. In inside air of the fermentation room, Cladosporium sp., Aspergillus oryzae, Penicillium chrysogenum, Asp. nidulans, Aspergillus sp., Cla. cladosporioides, Eurotium sp., Penicillium sp., Cla. tenuissimum, Asp. niger, Eur. herbariorum, Asp. sydowii, and Eur. repens were collected with high frequency. The concentrations of the genera Aspergillus, Eurotium, and Penicillium were significantly higher in inside air than outside air. From this result and those of previous reports, the origin of fungi present on Meju was inferred. Of the dominant fungal species present on Meju, Lichtheimia ramosa, Mucor circinelloides, Mucor racemosus, and Scopulariopsis brevicaulis are thought to be originated from outside air, because these species are not or are rarely isolated from rice straw and soybean; however, they were detected outside air of fermentation room and are species commonly found in indoor environments. However, Asp. oryzae, Pen. polonicum, Eur. repens, Pen. solitum, and Eur. chevalieri, which are frequently found on Meju, are common in rice straw and could be transferred from rice straw to Meju. The fungi grow and produce abundant spores during Meju fermentation, and after the spores accumulate in the air of fermentation room, they could influence mycobiota of Meju fermentation in the following year. This could explain why concentrations of the genera Aspergillus, Eurotium, and Penicillium are much higher inside than outside of the fermentation rooms.

Effects of Plant Herb Combination Supplementation on Rumen Fermentation and Nutrient Digestibility in Beef Cattle

  • Wanapat, M.;Kang, S.;Khejornsart, P.;Wanapat, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1127-1136
    • /
    • 2013
  • Four rumen-fistulated crossbred beef cattle (Brahman native) were randomly assigned according to a $4{\times}4$ Latin square design experiment to be fed plant herb supplements in their concentrate mixture. The treatments were: without herb supplementation (Control), lemongrass meal supplementation at 100 g/d (L), lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d (LP), and lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d with garlic powder 40 g/d (LPG), respectively. Based on the present study, the DMI and apparent digestibility of DM, OM, aNDF and ADF were not affected by dietary herb supplementation while CP digestibility tended to be decreased by herb supplement. Moreover, $NH_3$-N and BUN were decreased in all herb supplemented treatments and there was a tendency to an increase in ruminal pH in all herb supplemented groups. While there was no change in TVFA and C4 among lemongrass treatments, C2 was decreased in all herb supplemented treatments while C3 was increased. Methane production by calculation was the lowest in the LP and LPG groups. Population sizes of bacteria and protozoa were decreased in all herb supplemented groups, but not fungal zoospores. In all supplemented groups, total viable and proteolytic bacteria were decreased, while amylolytic and cellulolytic bacteria were similar. More importantly, in all herb supplemented groups, there were higher N balances, while there was no difference among treatments on purine derivative (PD) excretion or microbial N. Based on the results above, it could be concluded that there was no negative effect on ruminal fermentation characteristics and nutrient utilization by plant herb supplement, but protozoal population and $CH_4$ production were reduced. Thus, lemongrass alone or in combination with peppermint and garlic powder could be used as feed additives to improve rumen fermentation efficiency.

Fermentation of rice flour with Weissella koreensis HO20 and Weissella kimchii HO22 isolated from kimchi and its use in the making of jeolpyeon (김치유산균(Weissella koreensis HO20, Weissella kimchii HO22)으로 발효한 쌀가루의 이화학적 특성 및 이를 이용한 절편의 제조)

  • Choi, Hyejung;Lee, Hwawon;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.29 no.3
    • /
    • pp.267-274
    • /
    • 2013
  • Demand for a rice cake, a popular traditional food in Korea, is rising, but its industrial-scale production is extremely difficult due to its short shelf-life caused by starch retrogradation and microbial spoilage. By means of the sourdough fermentation technique, we attempt to develop rice cakes with a longer shelf-life. Heterofermentative lactic acid bacteria (Weissella koreensis HO20, Weissella kimchii HO22) isolated from kimchi were used to ferment wet-milled rice flour for their abilities to produce exopolysaccharides and to inhibit the microbial spoilage of rice cakes. After 24 hr of fermentation at $25^{\circ}C$, viable cell counts in rice dough increased from $10^6$ CFU/g to $10^8$ CFU/g and total titratable acidity increased from 0.05% to 0.20%, whereas pH decreased from 6.5 to 5.1. Fermented rice flour showed significantly lower peak, trough, and final viscosities as well as breakdown and setback viscosities measured by rapid viscoanalyzer. Both lactic acid bacteria showed in vitro antifungal activity against Penicillium crustosum isolated from rice cakes. The antifungal activity remained constant after the treatments with heat, proteinase K and trypsin, but fell significantly by increase of pH. Rice cakes made of fermented rice flour were found to retard mycelial growth of P. crustosum. The degree of retrogradation as measured by the hardness of the rice cake was significantly reduced by the use of fermented rice flour. The results suggest that use of fermented rice flour has a beneficial role in retarding starch retrogradation and in preventing fungal growth, hence extending the shelf-life of rice cakes.