• Title/Summary/Keyword: Fungal Treated Wheat Straw

Search Result 6, Processing Time 0.015 seconds

Effect of Fungal Treated Wheat Straw on the Diet of Lactating Cows

  • Fazaeli, H.;Jelan, Z.A.;Mahmodzadeh, H.;Liang, J.B.;Azizi, A.;Osman, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1573-1578
    • /
    • 2002
  • This study was conducted to investigate the effects of diets that contained different levels of fungal treated wheat straw on the intake, digestibility and performance of lactating cows. Eight primiparous Holstein cows, in late lactation ranging from $170{\pm}10$ days in milk and yielding $14.3{\pm}1.3$ kg/d of fat corrected milk (FCM) were allocated into four diets with 0, 10, 20 and 30% fungal (Pleurotus ostreatus coded P-41) treated wheat straw in a $4{\times}4$ Latin Square experiment. The daily intake of DM, OM, DOM, CP and TDN were not affected by substitution of alfalfa hay with fungal treated wheat straw. Inclusion of the treated straw at different levels in the diet did not affect the digestibility of nutrients, except for the ADF that was significantly (p<0.05) reduced in the diet contained 30% treated straw. The types of the diet did not significantly affect daily milk and FCM production. The milk composition including fat, protein, lactose, solid non-fat (SNF) and total solid (TS) were not statistically (p>0.05) different among the diets. All cows gained weight, but the inclusion of treated straw to the diet significantly (p<0.05) increased the body weight gain and the highest amount was obtained in the diet containing 20% treated. Inclusion of fungal treated wheat straw up to 30% of the diet of lactating cows supplemented with a protein source such as cottonseed meal had not affected the nutrients intake and lactation performance.

Effects of Varying Levels of Fungal (Arachniotus sp.) Treated Wheat Straw as an Ingredient of Total Mixed Ration on Growth Performance and Nutrient Digestibility in Nili Ravi Buffalo Calves

  • Shahzad, F.;Abdullah, M.;Chaudhry, A.S.;Bhatti, J.A.;Jabbar, M.A.;Ahmed, F.;Mehmood, T.;Asim, M.;Ahmed, S.;Kamran, Z.;Irshad, I.;Tahir, M.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.359-364
    • /
    • 2016
  • The study was carried out to explore the effects of replacing wheat straw with fungal treated wheat straw as an ingredient of total mixed ration (TMR) on the growth performance and nutrient digestibility in Nili Ravi buffalo male calves. Fungal treated wheat straw was prepared using Arachniotus sp. Four TMRs were formulated where wheat straw was replaced with 0 (TMR1), 33 (TMR2), 67 (TMR3), and 100% (TMR4) fungal treated wheat straw in TMR. All TMRs were iso-caloric and iso-nitrogenous. The experimental TMRs were randomly assigned to four groups of male calves (n = 6) according to completely randomized design and the experiment continued for four months. The calves fed TMR2 exhibited a significant improve in dry matter intake, average daily weight gain, feed conversion ratio and feed economics compared to other groups. The same group also showed higher digestibility of dry matter, crude protein, neutral-, and acid detergent fibers than those fed on other TMRs. It is concluded that TMR with 33% fungal-treated wheat straw replacement has a potential to give an enhanced growth performance and nutrient digestibility in male Nili Ravi buffalo calves.

Nutritive Value of Wheat Straw Treated with Pleurotus Fungi

  • Fazaeli, H.;Mahmodzadeh, H.;Azizi, A.;Jelan, Z.A.;Liang, J.B.;Rouzbehan, Y.;Osman, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1681-1688
    • /
    • 2004
  • Soaked and pasteurised wheat straw was inoculated with five species of Pleurotus fungi (coded P-21, P-30, P-41, P-60 and P-90), packed in polyethylene bags and incubated in a fermentation chamber for 21 days. The chemical composition, in vitro digestibility and in sacco degradability of the treated and untreated straw were estimated using a complete randomised design consisting of six treatments and four replicates. In a feeding trial, in vivo digestibility and voluntary intake were determined in bulls, using a $3{\times}3$change over design. Dietary treatments were: 1) untreated wheat straw (UWS) as control; 2) fungal treated (P-41) wheat straw before mushroom formation (FTWS); 3) spent wheat straw (SPWS) after mushrooms were harvested. Apart from P-90, fungal treatment significantly (p<0.05) increased the crude protein (CP) and reduced the cell wall components of the straw. The in vitro dry mater and organic mater digestibility significantly (p<0.05) increased in the treated straw particularly with the treatments of P-41 and P-60. The in situ degradability and in vivo digestibility of DM and OM were significantly (p<0.05) increased in treated straws with the highest values observed for treatment P-41. The intake of DM, OM and digestible organic mater (DOM) were significantly (p<0.05) increased in cows fed FTWS.

EFFECT OF MOLDY AND NONMOLDY WHEAT STRAW TREATED WITH OR WITHOUT AMMONIA ON PERFORMANCE AND BLOOD SERUM CONSTITUENTS IN STEERS

  • Khan, M.F.;Smith, G.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.413-419
    • /
    • 1994
  • Mold growth decreased nutritive value of wheat straw (WS). Mold increased DM (94 vs 98%) and ADF (51 vs 56%) contents and had no effect on natural detergent fiber (NDF). Crude protein and N values were decreased in moldy wheat straw, Mold increased insoluble N content of wheat straw (WS) from 21 to 27%. Ammoniation increased the CP of nonmoldy straw from 3.8 to 8.3% and moldy straw from (3.3 to 6.2%). Aspergillus and zygomycetes fungal species were most prevalent and total numbers were higher on moldy straw. Ammoniation decreased total numbers of fungal spores on nonmoldy and moldy WS. Ammoniation of moldy WS increased (p < 0.10) feed in take (1.8%) as compared with nonmoldy, ammoniated, nonmoldy and moldy WS. Steers fed moldy WS had lowest (p < 0.10) feed intake (1.3% of BW daily) compared with other diet. There was little difference (p < 0.10) in intake of nonammoniated vs. ammoniated WS. Steers fed moldy straw lost 6 kg BW. Ammoniated, nonmoldy straw elevated Blood Urea Nitrogen (BUN) (10.5 mg/dl). Alkaline Phosphatase (ALK) was greater in steers fed moldy VS nonmoldy straw (148 VS 95 U/liter. p < 0.10).

Utilization of Fungal Treated Wheat Straw in the Diet of Late Lactating Cow

  • Fazaeli, H.;Mahmodzadeh, H.;Jelan, Z.A.;Rouzbehan, Y.;Liang, J.B.;Azizi, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.4
    • /
    • pp.467-472
    • /
    • 2004
  • Eight primiparous Holstein cows, in late lactation (255$\pm$10 days in milk) and yielding 10.3$\pm$1.3 kg/d of 4% fat corrected milk (FCM) were allocated into two groups randomly. Two diets containing 30% wheat straw either untreated (UWS) or treated with Pleurotus ostreatus (FTWS) were offered as total mixed ration (TMR). In vivo digestibility of the diets was determined, using acid insoluble ash as a marker. Daily milk production was recorded and milk samples were collected and analysed. Diet FTWS resulted in significantly (p<0.05) higher dry matter intake (DMI) (12.2$\pm$0.86 vs. 10.6$\pm$1.3), DM digestibility (58.8 vs. 52.3) and milk yield (9 vs. 7.5 kg). Milk fat contents were 34.2 and 35.6 g/liter that did not differ between cows fed treated or untreated straw. However, the concentrations of lactose, solid non fat, total solids and milk protein for diets UWS and FTWS were 57.3 and 54.9, 98.9 and 93.2, 134.5 and 127.4, 35.7 and 32.3 g/l, respectively, which differed significantly (p<0.05). The average body weights gain (BWG) for UWS and FTWS were 272 and 743 g/d, respectively (p<0.05). The FCM yield per kg of DMI was similar (0.68 and 0.67 liter) for the two groups, but BWG/kgDMI was higher in the FTWS diet.

Effect of Ionophore Enriched Cold Processed Mineral Block Supplemented with Urea Molasses on Rumen Fermentation and Microbial Growth in Crossbred Cattle

  • De, Debasis;Singh, G.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.852-862
    • /
    • 2003
  • An experiment was conducted to study the effect of ionophore enriched cold processed mineral block supplemented with urea molasses on microbial growth and rumen fermentation. Twelve adult male crossbred cattle were divided into four groups on body weight basis. Animals were given wheat straw as a basal diet. The animals of group I and II were supplemented with concentrate mixture and animals of group III and IV were supplemented with cold processed urea molasses mineral block (UMMB). Thirty mg monensin/day/animal were supplemented to the animals of group II and 35 ppm monensin were incorporated in the UMMB supplemented to the animals of group IV. Dry matter (DM) intake did not differ significantly among groups. Mean rumen pH was higher in UMMB fed animals. Total volatile fatty acids (TVFA) concentration (mmole/L strained rumen liquor (SRL) in group III (113.19) was significantly (p<0.05) higher than those of group I (105.83) and II (108.74) but similar to group IV (109.34). TVFA production (mole/day) was similar in all the groups. The molar proportion of acetate was significantly (p<0.01) higher in the group I (59.56) than those of group II (51.73) and IV (55.91) but similar to group III (57.12). The molar proportion of propionate was significantly (p<0.01) higher in the monensin treated groups i.e. group II (38.38) and IV (36.26) than those of group I (27.78) and III (33.06). Butyrate molar percent was significantly (p<0.01) higher in group I (12.65) than those of group II (10.19), group III (9.83) and IV (7.84). The reduction of acetate and butyrate was due to UMMB and monensin resulted in lower A:P ratio. Average bacterial pool and bacterial production rate did not differ significantly among groups. Total N concentration (mg/100 ml SRL) was significantly (p<0.01) higher in the group I (55.30) and III (57.70) as compared to the group II (47.97) and IV (47.59). Ammonia-N concentration (mg/100 ml SRL) of group III (34.99) was significantly (p<0.01) higher than that of the group I (25.76) which was again significantly (p<0.01) higher than that of the group II (20.79) and IV (19.83) indicating slower release of ammonia due to monensin in diet. Total bacterial, cellulolytic, proteolytic bacterial and fungal count at 4 h post feeding did not differ significantly (p<0.05) among treatment groups. However, methanogenic bacterial count was significantly (p<0.01) higher in the group I (11.80) compared to the group II (8.43) which was significantly (p<0.01) higher than that of the group III (4.70) and IV (2.90). Average protozoal population was affected by both treatments. Thus feeding of UMMB and monensin in diet affected the rumen fermentation pattern towards propionate production, slower release of ammonia and reduction in methanogenic bacteria in the rumen.