• Title/Summary/Keyword: Fundamental frequency extraction

Search Result 27, Processing Time 0.024 seconds

A Development of the Digital Swithchgear using the Microprocessor (마이크로 프로세서를 이용한 전자식 배전반 개발)

  • Byun, Young-Bok;Joe, Ki-Youn;Koo, Heun-Hoi;Kim, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.375-379
    • /
    • 1990
  • A microprocessor-based multi-function switchgear for the protection, measurement and control of the power system is presented. For the extraction of the RMS values of the fundamental components of current and voltage signals, a simple digital filter based on cross-correlation of the distorted signal with even and odd heptagonal waves is used. The frequency response of this filter is almost identical to that of the filter based on the discrete fourier transform, while its computational requirement is far less. For the time delay element relaying, a new log-table based relaying algorithm is suggested. The suggested use of the heptagonal wave cross-correlation digital filter algorithm and a new relaying algorithm reduce the computational needs so drastically that all functions of the switchgear can be implemented on the microprocessor system. Real time testing of the implemented daboratory prototype show good practical response under different operating conditions.

  • PDF

Fault Diagnosis of a Pump Using Analysis of Noise (작동음의 분석을 이용한 펌프의 고장진단)

  • 박순재;이신영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.22-28
    • /
    • 2003
  • We should maintain the maximum operation capacity for production facilities and find properly out the fault of each equipment rapidly in order to decrease a loss caused by its failure. The acoustic signals of a machine always carry the dynamic information of the machine. These signals are very useful for the feature extraction and fault diagnosis. We performed a fundamental study which develops a system of fault diagnosis for a pump. We obtained noises by a microphone, analysed and compared the signals converted to Sequency range for normal products, artificially deformed products. We tried to search a change of noise signals according to machine malfunctions and analyse the type of deformation or failure. The results showed that acoustic signals as well as vibration signals can be used as a simple method for a detection of machine malfunction or fault diagnosis.

Structural identification of concrete arch dams by ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.227-237
    • /
    • 2013
  • Modal testing, widely accepted and applied method for determining the dynamic characteristics of structures for operational conditions, uses known or unknown vibrations in structures. The method's common applications includes estimation of dynamic characteristics and also damage detection and monitoring of structural performance. In this study, the structural identification of concrete arch dams is determined using ambient vibration tests which is one of the modal testing methods. For the purpose, several ambient vibration tests are conducted to an arch dam. Sensitive accelerometers were placed on the different points of the crest and a gallery of the dam, and signals are collected for the process. Enhanced Frequency Domain Decomposition technique is used for the extraction of natural frequencies, mode shapes and damping ratios. A total of eight natural frequencies are attained by experimentally for each test setup, which ranges between 0-12 Hz. The results obtained from each ambient vibration tests are presented and compared with each other in detail. There is a good agreement between the results for all measurements. However, the theoretical fundamental frequency of Berke Arch Dam is a little different from the experimental.

A study on DEMONgram frequency line extraction method using deep learning (딥러닝을 이용한 DEMON 그램 주파수선 추출 기법 연구)

  • Wonsik Shin;Hyuckjong Kwon;Hoseok Sul;Won Shin;Hyunsuk Ko;Taek-Lyul Song;Da-Sol Kim;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.78-88
    • /
    • 2024
  • Ship-radiated noise received by passive sonar that can measure underwater noise can be identified and classified ship using Detection of Envelope Modulation on Noise (DEMON) analysis. However, in a low Signal-to-Noise Ratio (SNR) environment, it is difficult to analyze and identify the target frequency line containing ship information in the DEMONgram. In this paper, we conducted a study to extract target frequency lines using semantic segmentation among deep learning techniques for more accurate target identification in a low SNR environment. The semantic segmentation models U-Net, UNet++, and DeepLabv3+ were trained and evaluated using simulated DEMONgram data generated by changing SNR and fundamental frequency, and the DEMONgram prediction performance of DeepShip, a dataset of ship-radiated noise recordings on the strait of Georgia in Canada, was compared using the trained models. As a result of evaluating the trained model with the simulated DEMONgram, it was confirmed that U-Net had the highest performance and that it was possible to extract the target frequency line of the DEMONgram made by DeepShip to some extent.

Robust Speech Recognition Algorithm of Voice Activated Powered Wheelchair for Severely Disabled Person (중증 장애우용 음성구동 휠체어를 위한 강인한 음성인식 알고리즘)

  • Suk, Soo-Young;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.250-258
    • /
    • 2007
  • Current speech recognition technology s achieved high performance with the development of hardware devices, however it is insufficient for some applications where high reliability is required, such as voice control of powered wheelchairs for disabled persons. For the system which aims to operate powered wheelchairs safely by voice in real environment, we need to consider that non-voice commands such as user s coughing, breathing, and spark-like mechanical noise should be rejected and the wheelchair system need to recognize the speech commands affected by disability, which contains specific pronunciation speed and frequency. In this paper, we propose non-voice rejection method to perform voice/non-voice classification using both YIN based fundamental frequency(F0) extraction and reliability in preprocessing. We adopted a multi-template dictionary and acoustic modeling based speaker adaptation to cope with the pronunciation variation of inarticulately uttered speech. From the recognition tests conducted with the data collected in real environment, proposed YIN based fundamental extraction showed recall-precision rate of 95.1% better than that of 62% by cepstrum based method. Recognition test by a new system applied with multi-template dictionary and MAP adaptation also showed much higher accuracy of 99.5% than that of 78.6% by baseline system.

Feature Extraction Algorithm for Distant Unmmaned Aerial Vehicle Detection (원거리 무인기 신호 식별을 위한 특징추출 알고리즘)

  • Kim, Juho;Lee, Kibae;Bae, Jinho;Lee, Chong Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.114-123
    • /
    • 2016
  • The effective feature extraction method for unmanned aerial vehicle (UAV) detection is proposed and verified in this paper. The UAV engine sound is harmonic complex tone whose frequency ratio is integer and its variation is continuous in time. Using these characteristic, we propose the feature vector composed of a mean and standard deviation of difference value between fundamental frequency with 1st overtone as well as mean variation of their frequency. It was revealed by simulation that the suggested feature vector has excellent discrimination in target signal identification from various interfering signals including frequency variation with time. By comparing Fisher scores, three features based on frequency show outstanding discrimination of measured UAV signals with low signal to noise ratio (SNR). Detection performance with simulated interference signal is compared by MFCC by using ELM classifier and the suggested feature vector shows 37.6% of performance improvement As the SNR increases with time, the proposed feature can detect the target signal ahead of MFCC that needs 4.5 dB higher signal power to detect the target.

GIS-Based Design Flood Estimation of Ungauged Watershed (논문 - GIS기반의 미계측 유역 설계홍수량 산정)

  • Hong, Seong-Min;Jung, In-Kyun;Park, Jong-Yoon;Lee, Mi-Seon;Kim, Seong-Joon
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.87-100
    • /
    • 2011
  • This study is to delineate the watershed hydrological parameters such as area, slope, rain gauge weight, NRCS-CN and time of concentration (Tc) by using the Geographic Information Sytem (GIS) technique, and estimation of design flood for an ungauged watershed. Especially, we attempted to determine the Tc of ungauged watershed and develop simple program using the cell-based algorithm to calculates upstream or downstream flow time along a flow path for each cell. For a $19km^2$ watershed of tributary of Nakdong river (Seupmoon), the parameters including flow direction, flow accumulation, watershed boundary, stream network and Tc map were extracted from 30m Agreeburn DEM (Digital Elevation Model) and landcover map. And NRCS-CN was extracted from 30m landcover map and soil map. Design rainfall estimation for two rainfall gauge which are Sunsan and Jangcheon using FARD2006 that developed by National Institute for Disaster Prevention (NIDP). Using the parameters as input data of HEC-l model, the design flood was estimated by applying Clark unit hydrograph method. The results showed that the design flood of 50 year frequency of this study was $8m^3/sec$ less than that of the previous fundamental plan in 1994. The value difference came from the different application of watershed parameter, different rainfall distribution (Huff quartile vs. Mononobe) and critical durations. We could infer that the GIS-based parameter preparation is more reasonable than the previous hand-made extraction of watershed parameters.

  • PDF