• Title/Summary/Keyword: Functional response

Search Result 1,373, Processing Time 0.026 seconds

Nitrogen Wash-Out Technique to Measure Functional Residual Capacity Based on Expired o2/Co2 Analysis (o2/Co2 분석기를 사용하여 폐의 기능적 잔기용량을 계측하는 질소세척법 개발)

  • Kim, Goon-Jin;Kim, Kyung-Ah;Lee, Jae-Hun;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.329-334
    • /
    • 2004
  • Functional residual capacity (FRC) is an important diagnostic parameter measured using $N_{2}$ analyzer. Since $N_{2}$ analyzer is expensive as well as cumbersome for use of noisy vacuum pump, the FRC measurement becomes possible only in large well-equipped hospitals. The present study introduced a new $TN_{2}$ wash-out technique to measure FRC by $O_{2}/CO_{2}$ analysis, which is relatively cheaper and much simpler to apply. Slower $O_{2}$ response was compensated for high frequency to be coincided with $CO_{2}$ response, thereby enabled indirect, but accurate $N_{2}$ concentration measurement. FRC was estimated by continuous integration of expired $N_{2}$ volume obtained with air flow signal. Experiment with 3 L syringe, a standard calibration device recommended by the American Thoracic Society, demonstrated less than 1% error at 0, 1, and 2 L. Correlation coefficient was almost ideal, guaranteeing linear estimation of FRC. The present technique is inexpensive and simple to apply, thus should he of great convenience.

Sympathetic Nerve Function to Electrical Response of Ryodoraku Point and Disarrangement of its Meridian Location on the Anatomical Viscera Exclude the Association between Ryodoraku Theory and Meridian Principle (양도점의 전기적 반응에 대한 교감신경작용과 경락 배열과 실질장기의 불일치는 양도락의 경락 관련성을 배제한다.(위 운동장애형 기능성 소화불량증 환자의 양도점 H4,5,6의 반응을 중심으로))

  • Yoon, Sang-Hyub
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.2
    • /
    • pp.259-277
    • /
    • 2011
  • Objectives : The purpose of this study was to investigate two subjects: the diagnostic value of bilateral lowering of electrical activity at point H4,5,6 of Ryodoraku and the mechanism for Ryodoraku phenomena. Methods : Electrical activities of Ryodoraku test and electrogastrography recorded simultaneously and monitored continuously from 16 cases of functional dyspeptic patients were collected and their variations were grouped by the topics of discussion which were peculiarity, stability, lagging, alterability, and anomaly. Ryodoraku recordings obtained from 6 patients with different gastrointestinal diseases and 1 normal healthy person were used as control. The results are discussed with Nakatani's suggestion, theory of sympathetic nerve and Meridian Principle, respectively. Finely, coincidence of stomach arrangement between anatomy and meridian system in Ryodoraku was also evaluated. Results : Time-course variation showed a regular relationship between the typical pattern of Ryodoraku at point H4,5,6 and gastric myoelectrical activity. However, an irregular relationship and atypical pattern of Ryodoraku occasionally appeared. A literature search suggested that electrical response at the Ryodoraku point H4,5,6 may be dependent on an afferent sympathetic spinal reflex transmitted from the stomach. However, there was no evidence for making clear whether bilateral lowering of electrical activity at this point was induced by hypofunction of local sympathetic nerve in the skin itself or of signals transmitted from the gastric sympathetic nerve or not. The coincidence of 19% could not provide a visceral arrangement of the stomach between anatomy and meridian systems. Conclusions : Bilateral lowering of electrical activity at Ryodoraku point H4,5,6 has value as a diagnostic index for gastric dysmotility of functional dyspepsia. This phenomenon is associated with spinal reflex transmitted from the afferent sympathetic nerve in the stomach but not that of meridian function.

The Role of Functional Feed Additives in Modulating Intestinal Health and Integrity

  • Kocher, Andreas
    • Korean Journal of Poultry Science
    • /
    • v.39 no.1
    • /
    • pp.33-37
    • /
    • 2012
  • One of the biggest challenges for the animal feed industry in the coming years will be to meet the growing demand in animal protein in light of increased cost of feed ingredient as well as tougher restrictions on the use of antimicrobial growth promoters imposed by consumers and governments. A key focus area will be to maximise feed efficiency and minimise nutrient waste. It has been widely acknowledged that the composition of the intestinal microflora is closely related to intestinal health and performance of animals. Advanced microbial techniques have shown a close relationship between bacterial communities and their ability to modulate nutrient absorption and processing. In addition it has been recognised that modulating the immune response has significant impact on overall health as well as overall nutrient demand. Molecular techniques are a useful tool to gain an understanding of the impact of dietary interventions including the use of functional feed additives on specific changes in microbial communities or the immune system. Most these techniques however focus on the evaluation of large changes in bacterial compositions and often underestimate or neglect to recognise small changes in microbial diversity or behaviour changes without any measurable immune response. The key to understanding the relationship between specific nutritional intervention and the impact on health and performance lies in a deeper understanding of the impact of these nutrients on the expression of specific genes or specific metabolic pathways. The development of molecular tools as a result of developments in the field of Nutrigenomics has enabled researchers to study the effects of specific nutrients on the whole genome or in other words, the effect of thousands of genes simultaneously, and has opened a completely different avenue for nutritional research.

Comparisons of functional brain mappings in sensory and affective aspects following taste stimulation (미각자극에 따른 감각 및 감성적 미각정보 처리과정의 기능적 매핑 비교)

  • Lee, Kyung Hee
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.585-592
    • /
    • 2012
  • Food is crucial for the nutrition and survival of humans. Taste system is one of the fundamental senses. Taste cells detect and respond to five basic taste modalities (sweet, bitter, salty, sour, and umami). However, the cortical processing of taste sensation is much less understood. Recently, there were many efforts to observe the brain activation in response to taste stimulation using functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and optical imaging. These different techniques do not provide directly comparable data each other, but the complementary investigations with those techniques allowed the description and understanding of the sequence of events with the dynamics of the spatiotemporal pattern of activation in the brain in response to taste stimulation. The purpose of this study is the understanding of the brain activities to taste stimuli in sensory and affective aspects and the reviewing of the recent research of the gustotopic map by functional brain mapping.

  • PDF

Improvement of Functional Properties of Egg White Protein through Glycation and Phosphorylation by Dry-heating

  • Enomoto, Hirofumi;Nagae, Shiho;Hayashi, Yoko;Li, Can-Peng;Ibrahim, Hisham R.;Sugimoto, Yasushi;Aoki, Takayoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.591-597
    • /
    • 2009
  • Egg white protein (EWP) was glycated with maltopentaose (MP) through the Maillard reaction and subsequently phosphorylated by $85^{\circ}C$ dry-heating at pH 4.0 for 1 d in the presence of pyrophosphate. The functional properties of glycated, phosphorylated EWP were compared with those of native EWP and with EWP which was phosphorylated by dry-heating in the presence of pyrophosphate under the same conditions. The phosphorus content of EWP was increased to ~0.60% by phosphorylation, and to ~0.74% by glycation with MP and subsequent phosphorylation. The electrophoretic mobility of EWP increased through phosphorylation. The stability of EWP against heat-induced insolubility at pH 7.0 was considerably improved by phosphorylation alone and further by phosphorylation after glycation. The anti-ovalbumin antibody response was reduced significantly by glycation and phosphorylation, and further reduced by phosphorylation after glycation. The anti-ovomucoid antibody response was reduced significantly by glycation, phosphorylation and phosphorylation after glycation. The calcium phosphate-solubilizing ability of EWP was enhanced by both phosphorylation methods.

Optimal Parameter Design for a Cryogenic Submerged Arc Welding(SAW) Process by Utilizing Stepwise Experimental Design and Multi-dimensional Design Space Analysis (단계적 실험 설계와 다차원 디자인 스페이스 분석 기술을 통한 초저온 SAW 공정의 최적 용접 파라미터 설계)

  • Lee, Hyun Jeong;Kim, Young Cheon;Shin, Sangmun
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.1
    • /
    • pp.51-68
    • /
    • 2020
  • Purpose: The primary objective of this research is to develop the optimal operating conditions as well as their associated design spaces for a Cryogenic Submerged Arc Welding(SAW) process by improving its quality and productivity simultaneously. Methods: In order to investigate functional relationships among quality characteristics and their associated control factors of an SAW process, a stepwise design of experiment(DoE) method is proposed in this paper. Based on the DoE results, not only a multi-dimensional design space but also a safe operating space and normal acceptable range(NAR) by integrating statistical confidence intervals were demonstrated. In addition, the optimal operating conditions within the proposed NAR can be obtained by a robust optimal design method. Results: This study provides a customized stepwise DoE method (i.e., a sequential set of DoE such as a factorial design and a central composite design) for Cryogenic SAW process and its statistical analysis results. DoE results can then provide both the main and interaction effects of input control factors and the functional relationships between the input factors and their associated output responses. Maximizing both the product quality with high impact strength and the productivity with minimum processing times simultaneously in a case study, we proposed a design space which can provide both acceptable productivity and quality levels and NARs of input control factors. In order to confirm the optimal factor settings and the proposed NARs, validation experiments were performed. Conclusion: This research may provide significant contributions and applications to many SAW problems by preparing a standardization of the functional relationship between the input factors and their associated output response. Moreover, the proposed design space based on DoE and NAR methods can simultaneously consider a number of quality characteristics including tradeoff between productivity and quality levels.

Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator

  • Jung, Arong;Rajakumar, Dhanarajan;Yoon, Bong-June;Baker, Bradley J.
    • Experimental Neurobiology
    • /
    • v.26 no.5
    • /
    • pp.241-251
    • /
    • 2017
  • Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.

Daily Gas Demand Forecast Using Functional Principal Component Analysis (함수 주성분 분석을 이용한 일별 도시가스 수요 예측)

  • Choi, Yongok;Park, Haeseong
    • Environmental and Resource Economics Review
    • /
    • v.29 no.4
    • /
    • pp.419-442
    • /
    • 2020
  • The majority of the natural gas demand in South Korea is mainly determined by the heating demand. Accordingly, there is a distinct seasonality in which the gas demand increases in winter and decreases in summer. Moreover, the degree of sensitiveness to temperature on gas demand has changed over time. This study firstly introduces changing temperature response function (TRF) to capture effects of changing seasonality. The temperature effect (TE), estimated by integrating temperature response function with daily temperature density, represents for the amount of gas demand change due to variation of temperature distribution. Also, this study presents an innovative way in forecasting daily temperature density by employing functional principal component analysis based on daily max/min temperature forecasts for the five big cities in Korea. The forecast errors of the temperature density and gas demand are decreased by 50% and 80% respectively if we use the proposed forecasted density rather than the average daily temperature density.

Responsiveness Comparisons of Self-Report Versus Therapist-Scored Functional Capacity for Workers With Low Back Pain

  • Choi, Bongsam;Park, So-Yeon
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.91-97
    • /
    • 2012
  • The primary aim of this study was to compare responsiveness of self-report by worker and therapist-scored functional capacity instrument. Self-report and therapist-scored interval-level person measures and item difficulties were compared at admission and discharge. Therapist and worker ratings were collected on 230 clients from 27 rehabilitation sites using the newly developed Occupational Rehabilitation Data Base (ORDB) functional capacity instrument. ORDB comprises several subscales measuring relevant variables of "a return-to-work model" in work-related rehabilitation clinics. The functional capacity scale deals with 10 DOT job factors. The rating scale categories were 1-severely impaired, 2-moderately impaired, 3-mildly impaired, and 4-not impaired. Only data from clients with low back pain (n=98) with complete data (both admission and discharge scores) were used for the present study. Therapists and workers completed the functional capacity instrument at admission and discharge. Rasch analysis [1-parameter item response theory model (IRT)] was applied to calibrate item difficulty and person ability measure of therapist and workers ratings. Effect sizes for therapist and self-report ratings were slightly different, .69 and .30, respectively. Therapist and worker ratings were more consistent at discharge (r=.54) than at admission (r=.32). Workers have a tendency to be more severe in their ratings (show higher item difficulties) than therapists at admission and discharge. Therapists and workers report similar magnitudes of improvement following treatment program. These findings challenge the belief that injured workers may unreliable source for monitoring therapeutic outcomes. Self-report measures have the advantage of conserving therapist time for treatment (versus evaluation). While the therapist and self-report ratings are comparable at discharge, there is less consistency at admission. Comparable therapist-worker ratings may be achieved by controlling for rating severity using IRT methodologies.

Differences in Large-scale and Sliding-window-based Functional Networks of Reappraisal and Suppression

  • Jun, Suhnyoung;Lee, Seung-Koo;Han, Sanghoon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.83-102
    • /
    • 2018
  • The process model of emotion regulation suggests that cognitive reappraisal and expressive suppression engage at different time points in the regulation process. Although multiple brain regions and networks have been identified for each strategy, no articles have explored changes in network characteristics or network connectivity over time. The present study examined (a) the whole-brain network and six other resting-state networks, (b) their modularity and global efficiency, which is an index of the efficiency of information exchange across the network, (c) the degree and betweenness centrality for 160 brain regions to identify the hub nodes with the most control over the entire network, and (d) the intra-network and inter-network functional connectivity (FC). Such investigations were performed using a traditional large-scale FC analysis and a relatively recent sliding window correlation analysis. The results showed that the right inferior orbitofrontal cortex was the hub region of the whole-brain network for both strategies. The present findings of temporally altering functional activity of the networks revealed that the default mode network (DMN) activated at the early stage of reappraisal, followed by the task-positive networks (cingulo-opercular network and fronto-parietal network), emotion-processing networks (the cerebellar network and DMN), and sensorimotor network (SMN) that activated at the early stage of suppression, followed by the greater recruitment of task-positive networks and their functional connection with the emotional response-related networks (SMN and occipital network). This is the first study that provides neuroimaging evidence supporting the process model of emotion regulation by revealing the temporally varying network efficiency and intra- and inter-network functional connections of reappraisal and suppression.