• Title/Summary/Keyword: Functional requirements of railway communication

Search Result 5, Processing Time 0.018 seconds

Performance Verification of WAVE Communication Technology for Railway Application (차량용 무선통신기술(WAVE)의 철도 적용을 위한 성능검증)

  • Kim, Keum-Bee;Ryu, Sang-Hwan;Choi, Kyu-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.456-467
    • /
    • 2016
  • Wireless Access in Vehicular Environments (WAVE) communication technology, which provides vehicleto-vehicle and vehicle-to-infrastructure communication and offers safe and convenient service, has been developed for application to an Intelligent Transport System (ITS). This paper provides field test results on a study of the feasibility of WAVE technology application to railway communication systems. A test railway communication system based on WAVE technology has been built along the Daebul line and a newly developed EMU. Field tests have been carried out according to the communication function requirements for LTE - R. The test results show that the railway communication system based on WAVE technology meets the functional requirements: maximum transmission length is 730m, maximum transfer delay is 5.69ms, and maximum interruption time is 1.36s; other tests including throughput test, video data transmission test, VoIP data test, and channel switching test also produced results that meets the functional requirements. These results suggest that WAVE technology can be applied to the railway communication system, enabling Vehicle-to-Wayside communication.

Analysis on Radio Communication Characteristics of LTE Railway Network (철도통합무선망(LTE-R)의 무선통신특성 분석)

  • Yoon, Byungsik;Lee, Sook-Jin;Kim, Dong Joon;Sung, Dong Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.1-8
    • /
    • 2020
  • The Ministry of Land, Infrastructure and Transport of Korea has been trying to spread integrated railway communication network technologies based on a major railway policy since 2012. As a result, the world's first commercial Long-Term Evolution - Railway (LTE-R) network was established on the Gangneung line (Manjong station - Gangneung station) and has been commercially operating as a railway communication system since 2017. Special function and performance requirements are needed for safe and efficient railway operations, such as group calls, emergency calls, functional addressing, and train control based on wireless communications. In this paper, we present functional and performance railway communications requirements that are based on European wireless railway communications systems. In addition, we measured communications characteristics and performance using a KTX field test on the Gangneung line to analyze the validity and reliability of the LTE-R network. Although the average Radio Frequency (RF) conditions were satisfied in the requirements, we found sudden communications quality degradation, such as Radio Link Failure (RLF) in some railway sections. We propose a way to improve performance and network installations based on in-depth analysis of LTE-R communications field-test results.

Functional Analysis between LTE-Railway and Public Safety-LTE (LTE 기반 철도통합망(LTE-R)과 재난통신망(PS-LTE)의 기능 분석)

  • Kim, Yong-Kyu;Yoon, Yong-Gi;Kim, Ju-Youp;Song, Yong-Soo;Choi, Sang-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.20-30
    • /
    • 2017
  • Due to the evolution of wireless communications technology, Long Term Evolution (LTE), which is a $4^{th}$ generation mobile communications system, has been adopted as a railway communications system. This LTE Railway (LTE-R) system is composed of various elemental functions, which are largely categorized into public safety and wireless communications for train control. Research on the public safety functions of railway communications have their roots in TRS based national public safety communication systems, and research on wireless communications functions for train control have their roots GSM-R, which is utilized by the ETCS in Europe. Based on these circumstances, this paper first analyzes the requirements for developing public safety technology in LTE-R, and compares those requirements with the functions of public safety LTE (PS-LTE), which is being deployed for the first time in the world by the South Korean government. Based on an analysis of the common and specific functions of LTE-R and PS-LTE, we conclude that there is little problem in integrating LTE-R and PS-LTE from the perspective of functionality. Second, this paper provides a comparison of the LTE-R requirements for the Quality of Service (QoS) with those of GSM-R utilized by the ETCS. This offers a guideline to allow LTE-R to be applied to a 500km/h train control system.

A Study on the Test and Evaluation Process Development for Korea Next Generation Highspeed Electric Multiple Unit (차세대 고속열차 시험평가 프로세스에 관한 연구)

  • Lee, Tae-Hyung;Kim, Sang-Soo;Kim, Seog-Won;Kim, Ki-Hwan;Chung, Heung-Chai
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.7-11
    • /
    • 2011
  • A high-speed railway system represents a typical example of large-scale multi-disciplinary system, consisting of subsystems such as rolling-stock, electrical hardware, electronics, control, information, communication, civil technology etc. The system design and acquisition data of the large-scale system must be the subject under strict configuration control and management. Systems engineering technology development project for Korea next generation High-speed Electric Multiple Unit (HEMU) system in progress is a national large system development project that is not only a large-size and complex but also multi-disciplinary in nature. Therefore, all stakeholders must understand and share the functional and performance requirements of HEMU throughout its life-cycle phases. Also in the test and evaluation phase, all systems requirements must be verified. In 2011, the prototype train manufacturing will be completed. It will do test run on the commercial line and all systems requirements are verified until 2012. For the system verification, the test and evaluation process have to be established before the test trial run. Using a systems engineering tool, the system design database(SDD) with requirements traceability and development process management in the course of the development have to be established. This paper represents the test and evaluation process development based on the SEMP(Systems Engineering Management Plan) developed in the design stage. The test and evaluation process is refined and updated in comparison to the design stage one. The test and evaluation process consists of procedure, test and evaluation method and schedule. So through this process, it is defined that each systems requirements is verified on which test and about what time.

Implementation & Application of Instrumentation System on Performance Evaluation for Korea-Radio Train Control System (통신기반 열차제어시스템 성능평가용 계측시스템 구현 및 적용)

  • Lee, Jae-Ho;Lee, Kang-Mi;Park, Pyoung-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1777-1783
    • /
    • 2013
  • This study aims to implement an instrumentation system measuring and analysing real-time data of information flow between respective subunits composing train control system as the performance evaluation method for wireless communication based urban railway train control system under development for a Korean model. It analyses system functional requirements regarding subsystems composing wireless communication based train control system and test items for functions presented in each specification and examines data and measurement point for measuring according to test items in order to implement an instrumentation system. And, it clearly defines requirements of an instrumentation system to avoid malfunction or error in operation of train control system. It reviews data processing method and display method for effective analysis of data flow between respective subunits with measured data, designs and makes an instrumentation system. Ultimately, it applies to a performance test of train control system and makes sure an instrumentation system in normal working order.