• Title/Summary/Keyword: Function Classification

Search Result 1,619, Processing Time 0.03 seconds

A Study on the Extraction of Basis Functions for ECG Signal Processing (심전도 신호 처리를 위한 기저함수 추출에 관한 연구)

  • Park, Kwang-Li;Lee, Jeon;Lee, Byung-Chae;Jeong, Kee-Sam;Yoon, Hyung-Ro;Lee, Kyoung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.293-299
    • /
    • 2004
  • This paper is about the extraction of basis function for ECG signal processing. In the first step, it is assumed that ECG signal consists of linearly mixed independent source signals. 12 channel ECG signals, which were sampled at 600sps, were used and the basis function, which can separate and detect source signals - QRS complex, P and T waves, - was found by applying the fast fixed point algorithm, which is one of learning algorithms in independent component analysis(ICA). The possibilities of significant point detection and classification of normal and abnormal ECG, using the basis function, were suggested. Finally, the proposed method showed that it could overcome the difficulty in separating specific frequency in ECG signal processing by wavelet transform. And, it was found that independent component analysis(ICA) could be applied to ECG signal processing for detection of significant points and classification of abnormal beats.

Modular neural network in prediction of protein function (단위 신경망을 이용한 단백질 기능 예측)

  • Hwang Doo-Sung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.1-6
    • /
    • 2006
  • The prediction of protein function basically make use of a protein-protein interaction map based on the concept of guilt-by-association. The method however cannot determine the functions of proteins in case that the target protein does not interact with proteins with known functions directly. This paper studies protein function prediction considering the given problem as a K-class classification problem and proposes a predictive approach utilizing a modular neural network. The proposed method uses interaction data and protein related attributes as well. The experimental results demonstrate that the proposed approach can predict the functional roles of Yeast proteins whose interaction knowledge is not known and shows better performance than the graph-based models that use protein interaction data.

On the Radial Basis Function Networks with the Basis Function of q-Normal Distribution

  • Eccyuya, Kotaro;Tanaka, Masaru
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.26-29
    • /
    • 2002
  • Radial Basis Function (RBF) networks is known as efficient method in classification problems and function approximation. The basis function of RBF networks is usual adopted normal distribution like the Gaussian function. The output of the Gaussian function has the maximum at the center and decrease as increase the distance from the center. For learning of neural network, the method treating the limited area of input space is sometimes more useful than the method treating the whole of input space. The q-normal distribution is the set of probability density function include the Gaussian function. In this paper, we introduce the RBF networks with the basis function of q-normal distribution and actually approximate a function using the RBF networks.

  • PDF

The Characteristics in Obesity Classification Group of College Student by Analyzing Their BMI and Blood Test and the Association between Factors Contributing to Obesity and Obesity according to BMI (대학생 체질량지수와 혈액검사결과 상 비만 분류군간 특성 및 비만 연관 요인 분석에 대한 연구)

  • Park, Jung-Sik;Lee, Jung-Jae;Oh, Hyun-Sook;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.4
    • /
    • pp.61-70
    • /
    • 2014
  • Objectives The purpose of this study was to investigate the characteristics in obesity classification group of college students having health checkup by analyzing their BMI and blood test and determine the association between factors contributing to obesity and obesity according to BMI. Methods A group of 2992 test subjects took their medical examination and their body composition, height, weight, blood pressure were measured and blood test was done. With these results we diagnosed obesity, and analysed relationship between obesity and cholesterol, triglyceride, LDL (low density lipoprotein)-cholesterol, HDL (high density lipoprotein)-cholesterol, liver function, renal function and blood pressure. Results 1. Overweight individuals showed high total cholesterol, LDL-cholesterol, triglyceride, GOT (glutamic oxalacetic transaminase), GPT (glutamic pyruvate transaminase), Urea-nitrogen, Creatinine and low HDL-cholesterol. 2. BMI showed a significant association with other factors. BMI has a negative correlation with sex and HDL-cholesterol. BMI had positive correlations with other factors. 3. There was no relation between BMI and sex. Those six factors, liver function, cholesterol, blood pressure, kidney function, neutral fat, and blood sugar were related to BMI. Conclusions There was a significant relation between college students' BMI and their liver function, cholesterol, blood pressure, kidney function, neutral fat, and blood sugar. The diseases related to liver function, cholesterol, blood pressure, kidney function, neutral fat, and blood sugar were clearly associated with obesity.

Feature Vector Extraction and Automatic Classification for Transient SONAR Signals using Wavelet Theory and Neural Networks (Wavelet 이론과 신경회로망을 이용한 천이 수중 신호의 특징벡타 추출 및 자동 식별)

  • Yang, Seung-Chul;Nam, Sang-Won;Jung, Yong-Min;Cho, Yong-Soo;Oh, Won-Tcheon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.71-81
    • /
    • 1995
  • In this paper, feature vector extraction methods and classification algorithms for the automatic classification of transient signals in underwater are discussed. A feature vector extraction method using wavelet transform, which shows good performance with small number of coefficients, is proposed and compared with the existing classical methods. For the automatic classification, artificial neural networks such as multilayer perceptron (MLP), radial basis function (RBF), and MLP-Class are utilized, where those neural networks as well as extracted feature vectors are combined to improve the performance and reliability of the proposed algorithm. It is confirmed by computer simulation with Traco's standard transient data set I and simulated data that the proposed feature vector extraction method and classification algorithm perform well, assuming that the energy of a given transient signal is sufficiently larger than that of a ambient noise, that there are the finite number of noise sources, and that there does not exist noise sources more than two simultaneously.

  • PDF

An effective classification method for TFT-LCD film defect images using intensity distribution and shape analysis (명암도 분포 및 형태 분석을 이용한 효과적인 TFT-LCD 필름 결함 영상 분류 기법)

  • Noh, Chung-Ho;Lee, Seok-Lyong;Zo, Moon-Shin
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1115-1127
    • /
    • 2010
  • In order to increase the productivity in manufacturing TFT-LCD(thin film transistor-liquid crystal display), it is essential to classify defects that occur during the production and make an appropriate decision on whether the product with defects is scrapped or not. The decision mainly depends on classifying the defects accurately. In this paper, we present an effective classification method for film defects acquired in the panel production line by analyzing the intensity distribution and shape feature of the defects. We first generate a binary image for each defect by separating defect regions from background (non-defect) regions. Then, we extract various features from the defect regions such as the linearity of the defect, the intensity distribution, and the shape characteristics considering intensity, and construct a referential image database that stores those feature values. Finally, we determine the type of a defect by matching a defect image with a referential image in the database through the matching cost function between the two images. To verify the effectiveness of our method, we conducted a classification experiment using defect images acquired from real TFT-LCD production lines. Experimental results show that our method has achieved highly effective classification enough to be used in the production line.

Efficient QRS Detection and PVC(Premature Ventricular Contraction) Classification based on Profiling Method (효율적인 QRS 검출과 프로파일링 기법을 통한 심실조기수축(PVC) 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.705-711
    • /
    • 2013
  • QRS detection of ECG is the most popular and easy way to detect cardiac-disease. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, the design of algorithm that exactly detects QRS wave using minimal computation and classifies PVC by analyzing the persons's physical condition and/or environment is needed. Thus, efficient QRS detection and PVC classification based on profiling method is presented in this paper. For this purpose, we detected QRS through the preprocessing method using morphological filter, adaptive threshold, and window. Also, we applied profiling method to classify each patient's normal cardiac behavior through hash function. The performance of R wave detection, normal beat and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.77% in R wave detection and the rate of 0.65% in normal beat classification error and 93.29% in PVC classification.

A Novel Two-Stage Training Method for Unbiased Scene Graph Generation via Distribution Alignment

  • Dongdong Jia;Meili Zhou;Wei WEI;Dong Wang;Zongwen Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3383-3397
    • /
    • 2023
  • Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.

Comparison of Fuzzy Classifiers Based on Fuzzy Membership Functions : Applies to Satellite Landsat TM Image

  • Kim Jin Il;Jeon Young Joan;Choi Young Min
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.842-845
    • /
    • 2004
  • The aim of this study is to compare the classification results for choosing the fuzzy membership function within fuzzy rules. There are various methods of extracting rules from training data in the process of fuzzy rules generation. Pattern distribution characteristics are considered to produce fuzzy rules. The accuracy of classification results are depended on not only considering the characteristics of fuzzy subspaces but also choosing the fuzzy membership functions. This paper shows how to produce various type of fuzzy rules from the partitioning the pattern spaces and results of land cover classification in satellite remote sensing images by adopting various fuzzy membership functions. The experiments of this study is applied to Landsat TM image and the results of classification are compared by fuzzy membership functions.

  • PDF

Pattern Classification of the QRS-complexes Using Relational Correlation (관계상관식을 이용한 QRS 패턴분류)

  • Hwang, Seon-Cheol;Jeong, Hee-Kyo;Shin, Kun-Soo;Lee, Byung-Chae;Lee, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.428-431
    • /
    • 1990
  • This paper describes a pattern classification algorithm of QRS-complexes using significant point detection for extracting features of signals. Significant point extraction was processed by zero-crossing method, and decision function based on relational spectrum was used for pattern classification of the QRS-complexes. The hierarchical AND/OR graph was obtained by decomposing the signal, and by use of this graph, QRS's patterns were classified. By using the proposed algorithm, the accuracy of pattern classification and the processing speed were improved.

  • PDF