• Title/Summary/Keyword: Fume Particles

Search Result 36, Processing Time 0.027 seconds

Characterization of Nanoparticles from Welding and Grinding Processes: Evaluation of Number Concentration and Size Distribution (용접 및 연마에서 발생되는 나노입자 특성 평가 : 수농도 및 입경분포 분석)

  • Kim, Boowook;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.184-190
    • /
    • 2012
  • Objectives: This study aimed to characterize the nanoparticles produced by welding and grinding processes. Methods: The number concentrations of particles were mapped to determine the distribution of welding fumes in a workplace atmosphere using a hand-held condensation particle counter. An electrical low-pressure impactor was used for measuring the number concentration and particle size distribution. Results: High number concentrations were found around arc cutting and welding (grinding) processes. In the worker's breathing zone, the mean number concentration was 655,000 particles/cm3 and the count median diameter (CMD) was 84 nm with several multi peak distributions (~20, 70, 300 nm). However, at a distance of 3 m from the welding position, the number concentration decreased to 153,000 particles/cm3 with a 70 nm single peak size distribution. During a grinding process, peaks with high concentrations of nanoparticles were temporarily observed. The mean number concentration was 1,520,000 particles/cm3, and the CMD was 30 nm. Nanoparticles (<100 nm) made up 58% and 92% of the aerosols produced by welding and grinding processes, respectively.

A Study on Mechanical Properties of SM490-TMC Back Plate(40 mm) Steel by SAW Welding (SM490-TMC 후판(40 mm) 강재의 SAW 용접을 통한 기계적 특성 연구)

  • Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.88-93
    • /
    • 2021
  • SAW (Submerged Arc Welding) is often used for ship construction or welding pressure vessels and involves spraying a flux in a powder form to a welding site to a certain thickness and continuously supplying electrode wires therein. This welding method enables high current welding up to 1,500 to 3,000 A. Arc efficiency is higher than 95% and the technique allows clean work as it creates less welding fume, which is composed of fine metal oxide particles, and the arc beam is not exposed. In this study, SM490C-TMC thick plates were heterogeneously welded by SAW. Mechanical properties of welds were measured, and welds were assessed macroscopically and for adhering magnetic particles. The following conclusions were drawn. Bending tests showed no spots exploded on sample surfaces or any other defect, and plastic deformation testing confirmed sufficient weld toughness. These results showed the 1F welding method has no shortcomings in terms of bending performance.

Experimental Investigation of Electrochemical Corrosion and Chloride Penetration of Concrete Incorporating Colloidal Nanosilica and Silica Fume

  • Garg, Rishav;Garg, Rajni;Singla, Sandeep
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.440-452
    • /
    • 2021
  • Enhancement of durability and reduction of maintenance cost of concrete, with the implementation of various approaches, has always been a matter of concern to researchers. The integration of pozzolans as a substitute for cement into the concrete is one of the most desirable technique. Silica fume (SF) and colloidal nanosilica (CS) have received a great deal of interest from researchers with their significant performance in improving the durability of concrete. The synergistic role of the micro and nano-silica particles in improving the main characteristics of cemented materials needs to be investigated. This work aims to examine the utility of partial substitution of cement by SF and CS in binary and ternary blends in the improvement of the durability characteristics linked to resistance for electrochemical corrosion using electrical resistivity and half-cell potential analysis and chloride penetration trough rapid chloride penetration test. Furthermore, the effects of this silica mixture on the compressive strength of concrete under normal and aggressive environment have also been investigated. Based on the maximum compression strength of the concrete, the optimal cement substituent ratios have been obtained as 12% SF and 1.5% CS for binary blends. The optimal CS and SF combination mixing ratios has been obtained as 1.0% and 12% respectively for ternary blends. The ternary blends with substitution of cement by optimal percentage of CS and SF exhibited decreased rate for electrochemical corrosion. The strength and durability studies were found in consistence with the microstructural analysis signifying the beneficiary role of CS and SF in upgrading the performance of concrete.

The Non-Destructive Determination of Heavy Metals in Welding Fume by EDXRF (EDXRF에 의한 용접흄 중의 중금속의 비파괴 정량)

  • Park, Seunghyun;Jeong, Jee Yeon;Ryoo, Jang Jin;Lee, Naroo;Yu, Il Je;Song, Kyung Seuk;Lee, Yong Hag;Han, Jeong Hee;Kim, Sung Jin;Park, Jung sun;Chung, Ho Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.229-234
    • /
    • 2001
  • The EDXRF(Energy Dispersive X-ray Fluorescence Spectrometer) technique was applied to the determination of heavy metals in welding fume. The EDXRF method designed in this study was a non-destructive analysis method. Samples were analyzed directly by EDXRF without any pre-treatment such as digestion and dilution. The samples used to evaluate this method were laboratory samples exposed in a chamber connected with a welding fume generator. The samples were first analyzed using a non-destructive EDXRF method. The samples subsequently were analyzed using AAS method to verify accuray of the EDXRF method. The purpose of this study was to evaluate the possibility of the non-destructive analysis of heavy metals in welding fume by EDXRF. The results of this study were as follow: 1.When the samples were collected under the open-face sampling condition, a surface distribution of welding fume particles on sample filters was uniform, which made non-destructive analysis possible. 2. The method was statistically evaluated according to the NIOSH(National Institute for Occupational Safety and Health) and HSE(Health and Safety Executive) method. 3. The overall precision of the EDXRF method Was calculated at 3.45 % for Cr, 2.57 % for Fe and 3.78 % for Mn as relative standard deviation(RSD), respectively. The limits of detection were calculated at $0.46{\mu}g$/sample for Cr, $0.20{\mu}g$/sample for Fe and $1.14{\mu}g$/sample for Mn, respectively. 4. A comparison between the results of Cr, Fe, Mn analyzed by EDXRF and AAS was made in order to assess the accuracy of EDXRF method. The correlation coefficient between the results of EDXRF and AAS was 0.9985 for Cr, 0.9995 for Fe and 0.9982 for Mn, respectively. The overall uncertainty was determined to be ${\pm}12.31%$, 8.64 % and 11.91 % for Cr, Fe and Mn, respectively. In conclusion, this study showed that Cr, Fe, Mn in welding fume were successfully analyzed by the EDXRF without any sample pre-treatment such as digestion and dilution and a good correlation between the results of EDXRF and AAS was obtained. It was thus possible to use the EDXRF technique as an analysis method of working environment samples. The EDXRF method was an efficient method in a non-destructive analysis of heavy metals in welding fume.

  • PDF

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

The effect of fly ash/slag on the property of reactive powder mortar designed by using Fuller's ideal curve and error function

  • Hwang, C.L.;Hsieh, S.L.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.425-436
    • /
    • 2007
  • This study is mainly focused on applying Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of a reactive powder mortar (RPM), also known as reactive powder concrete (RPC), with the aid of error function, and then to study the effect of fly ash/slag on the performance of RPM. The solid particle is assumed to be spherical particles. Then, the void volume of paste ($V_{\nu}$) and the paste content with specific quality can be obtained. As conclusion, under Fuller's ideal grading curve, the amount of fly ash/slag mixture is higher than that with silica fume along due to it better filled the void within solid particle and obtains higher packing density.

Durability of high performance sandcretes (HPS) in aggressive environment

  • Benamara, Dalila;Tebbal, Nadia;Rahmouni, Zine El Abidine
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.199-206
    • /
    • 2019
  • High performance sandcretes (HPS) are new concretes characterized by particles having a diameter less than 5 mm, as well as very high mechanical strength and durability. This work consists in finding solutions to make sandcretes with good physico-mechanical and durability properties for this new generation of micro-concrete. However, upgrading ordinary sandcrete into high performance sandcrete (HPS) requires a thorough study of formulation parameters (equivalent water/binder ratio, type of cement and its dosage, kind and amount of super plasticizer, and gravel/sand ratio). This research study concerns the formulation, characterization and durability, in a sulphate environment, of a high performance sandcrete (HPS), made from local materials. The obtained results show that the rheological properties of fresh concrete and mechanical strength differ with the mineralogy, density and grain size distribution of sands and silica fume used.

A Feasibility Study on the Application of Ferrosilicon By-Product in Concrete to Replace Silica Fume (콘크리트 내 실리카퓸을 대체하기 위한 페로실리콘 산업부산물의 활용 적절성에 대한 연구)

  • Kim, Hansol;Cho, Won Jung;Ann, Ki Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.413-422
    • /
    • 2019
  • A ferrosilicon (FS) by-product was applied into a cementitious binder in concrete substituting the ordinary Portland cement (OPC). The original material characteristic of FS is very identical to silica fume (SF) regarding chemical composition and physical properties such as specific surface area and specific gravity. Therefore, the FS and SF concrete or mortal of which 10% of the material was replaced to total binder weight were fabricated to evaluate the feasibility of using F S as a binder, and the comparative information of OPC, FS and SF concrete was given. The hydration characteristic of FS concrete was analyzed using X-ray diffraction analysis. The FS concrete was beneficial in compressive strength, resistivity against chloride ingress and reducing porosity considering performance of OPC concrete but the advantage was less than using SF. A possibility of alkali-silica expansion was found out from the FS concrete due to the agglomerated size of the silica particles.

Full-scale EFC Study on Oil Recovery and Reuse from Discharge Gas of Tenter Facility in Textile Industry (Full-scale EFC (Electric Fume Collector)를 활용한 텐타공정 배출가스 정화 및 오일 회수)

  • Hwang, Yeal-Soon;Park, Hee-Jae;Chung, Gu-Hoi;Kim, Duk-Hyun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.259-265
    • /
    • 2011
  • The textile industry is suffered from air pollution problems which must be resolved. In particular, white smoke and odor after the tenter process require abatement. The major air pollution problem in the textile industry occurs during the finishing stages, where various chemicals are used for coating the fabrics. Lubricating oils, plasticizers, and water repellent chemicals are the fabric treatment chemicals. The coated fabrics are cured by heating in tenter facility. In this process, most of air pollutants emitted into the air. White smoke is basically made up of tiny solid or liquid particles of VOCs less than one micron in size. The oil mist can be carried over long distance from their point of origin. The most effective method of removing odor from tenter process is to get rid of tiny oil mist at the emitted gas. For this reason, the full-scale EFC (Electric Fume Collector) of 700 CMM was tested for removing odorous substances emitted from tenter facility. As a result of this study, odor and white smoke can be eliminated effectively and quite large amounts of oil can be recovered.

Experimental Study on the Evaluation of frost-Resistance of High-Strength Concrete Damaged by frost at Early Age in Cold Climates (동절기 초기재령에서 동해를 받은 고강도콘크리트의 내동해성 평가에 관한 실험적 연구)

  • 권영진
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.139-145
    • /
    • 2001
  • One of ways to make high-strength concrete is for the mix contain particles graded down to the finest size : this is achieved by the use of fly ash, silica fume which fills the spaces between the cement particle and between the aggregate and the cement particles. And, the mix needs a sufficient workability. This is achieved by the use of a superplasticizer. This study is to investigate frost resistance of high-strength concrete at early age, with ratio of tensile strength and recovery of compressive strength, when high-strength concrete is placed in cold climates. According to this study, it is necessary to ensure 4 % of air content, 5 kgf/$\textrm{cm}^2$ of tensile strength, at least, for frost resistance of high-strength concrete at early age.