• 제목/요약/키워드: Fully coupling

검색결과 141건 처리시간 0.034초

불포화지반에 대한 열-수리-역학 거동의 수식화 (Formulation of fully coupled THM behavior in unsaturated soil)

  • 신호성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.808-812
    • /
    • 2010
  • A great deal of attention is focused on coupled Thermo-Hydro-Mechanical (THM) behavior of multiphase porous media in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from 3 mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. Finite element code is developed from the Galerkin formulation and time integration of these governing equations for 4 main variables (displacement $\underline{u}$, gas pressure $P_g$, liquid pressure $P_l$), and temperature T). The code is validated with theoretical solutions for linear material with simple boundary conditions.

  • PDF

Calculation of electric field gradient tensor for simple point charge distributions and its application to real systems

  • Choh, Sung-Ho;Shin, Hee-Won;Park, II-Woo;Ju, Heong-Kyu;Kim, Jong-Hyun;Kim, Hae-Jin
    • 한국자기공명학회논문지
    • /
    • 제7권1호
    • /
    • pp.16-24
    • /
    • 2003
  • Nuclei with the spin quantum number not smaller than unity have not only the nuclear magnetic moment but also the electric quadrupole moment. The quadrupole moment couples with the electric field gradient (EFG) to produce the nuclear quadrupole interaction. It is well known that two independent parameters, i.e. the quadrupole coupling constant (QCC) and the asymmetry parameter ($\eta$) together with the principal axis directions can fully describe the interaction and are very sensitive to the local symmetry and structure of the solid. In order to obtain quantitative estimates of the EFG tensor for various simple ionic configurations surrounding the nucleus under consideration, we employ the simple point charge approximation and apply the calculated results to some real crystals. General agreement is rather satisfactory.

  • PDF

새로운 광굴절재료의 제작 및 특성 (Synthesis and Properties of the New Photorefractive Material)

  • 민완기;김남오
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.142-148
    • /
    • 2002
  • Considerable progress has been made in organic photorefractive materials, since the first observation of photorefractive phenomena from organic materials. Within recent years, a large number of organic photorefractive materials, especially amorphous materials, have been developed based on polymeric composites, fully functional polymers and the multi-functional chromophore approach. Among these organic photorefractive materials, some of them containing carbazole components as a charge transporting function have been demonstrated to exhibit high performance photorefractive effects. The carbazole building blocks with charge transporting function or multifunctions play a very important role in photorefraction. In this paper, it confirmed that acceptor-substituted carbazoles show the multifunctionality both of photoconductivity and electro-optic(EO) activity and photorefractive materials newly can be developed with acceptor-substituted carbazoles.

Improved HPC method for nonlinear wave tank

  • Zhu, Wenbo;Greco, Marilena;Shao, Yanlin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.598-612
    • /
    • 2017
  • The recently developed Harmonic Polynomial Cell (HPC) method has been proved to be a promising choice for solving potential-flow Boundary Value Problem (BVP). In this paper, a flux method is proposed to consistently deal with the Neumann boundary condition of the original HPC method and enhance the accuracy. Moreover, fixed mesh algorithm with free surface immersed is developed to improve the computational efficiency. Finally, a two dimensional (2D) multi-block strategy coupling boundary-fitted mesh and fixed mesh is proposed. It limits the computational costs and preserves the accuracy. A fully nonlinear 2D numerical wave tank is developed using the improved HPC method as a verification.

Adaptive Decoupling for IPM Machine(ICCAS 2005)

  • Cho, Sung-Uk;Park, Seung-Kyu;Ahn, Ho-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1617-1620
    • /
    • 2005
  • The current control for interior permanent magnet machines is more complicate than surface permanent magnet machine because of its torque characteristic depending on the reluctance. For high performance torque control, it requires state decoupling between the d-current and q-current dynamics. However the variation of the inductances, which couples the state dynamics of the currents, makes the state decoupling difficult. So some decoupling methods have developed to cope this variations and each current can be regulated independently. This paper presents a novel approach for fully decoupling the states cross-coupling using parameter adaptation. The adaptation method is based on the error between reference currents and the currents with state decoupling which have to follow the references. This method is more object-oriented than the other online parameter estimation methods in IPM machine and other electrical machines

  • PDF

Solenoid Type 3-D Passives(Inductors and Trans-formers) For Advanced Mobile Telecommunication Systems

  • Park, Jae Y.;Jong U. Bu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권4호
    • /
    • pp.295-301
    • /
    • 2002
  • In this paper, solenoid-type 3-D passives (inductors and transformers) have been designed, fabricated, and characterized by using electroplating techniques, wire bonding techniques, multi-layer thick photoresist, and low temperature processes which are compatible with semiconductor circuitry fabrication. Two different fabrication approaches are performed to develop the solenoid-type 3-D passives and relationship of performance characteristics and geometry is also deeply investigated such as windings, cross-sectional area of core, spacing between windings, and turn ratio. Fully integrated inductor has a quality factor of 31 at 6 GHz, an inductance of 2.7 nH, and a self resonant frequency of 15.8 GHz. Bonded wire inductor has a quality factor of 120, an inductance of 20 nH, and a self resonant frequency of 8 GHz. Integrated transformers with turn ratios of 1:1 and n:l have the minimum insertion loss of about 0.6 dB and the wide bandwidth of a few GHz.

로터 회전 및 타워의 탄성력을 고려한 MW 급 풍력발전기의 비선형 다물체 동적 응답 해석 (Multi-Body Dynamic Response Analysis of a MW-Class Wind Turbine System Considering Rotating and Flexibility)

  • 김동만;김동현;김요한;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.78-83
    • /
    • 2009
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a whole huge wind turbine system including composite blades, tower and nacelle. For this study, computational fluid dynamics (CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade model. Multi-body dynamic structural analyses are conducted based on the non-linear finite element method (FEM) by using super-element method for composite laminates blade. Three-dimensional finite element model of a wind turbine system is constructed including power train(main shaft, gear box, coupling, generator), bedplate and tower. The results for multi-body dynamic simulations on the wind turbine's critical operating conditions are presented in detail.

  • PDF

Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Perez-Aparicio, Jose L.
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.5-25
    • /
    • 2018
  • A fully-coupled thermodynamic-based transient finite element formulation is proposed in this article for electric, magnetic, thermal and mechanic fields interactions limited to the linear case. The governing equations are obtained from conservation principles for both electric and magnetic flux, momentum and energy. A full-interaction among different fields is defined through Helmholtz free-energy potential, which provides that the constitutive equations for corresponding dual variables can be derived consistently. Although the behavior of the material is linear, the coupled interactions with the other fields are not considered limited to the linear case. The implementation is carried out in a research version of the research computer code FEAP by using 8-node isoparametric 3D solid elements. A range of numerical examples are run with the proposed element, from the relatively simple cases of piezoelectric, piezomagnetic, thermoelastic to more complicated combined coupled cases such as piezo-pyro-electric, or piezo-electro-magnetic. In this paper, some of those interactions are illustrated and discussed for a simple geometry.

공동주택내 다분기챔버형 환기시스템 적용을 통한 풍량분배 개선효과에 관한 연구 (Performance Evaluation of Multidrop Chamber Ventilation System in Apartment)

  • 김성수;손장열
    • 설비공학논문집
    • /
    • 제21권10호
    • /
    • pp.545-552
    • /
    • 2009
  • It is common to design the duct branches where to supply the required air flow for individual room in residential apartment house. And TAB process is applied to control the designed air volume with adjusting volume dampers and/or supply diffusers after fully installing the ventilation system. This process has been resulted increasing the initial cost for the residential ventilation system because of man-hour and accessories such as volume control damper or diffuser. However it is difficult to adjust the air volume adequately in small air duct branches in residential ventilation system. The purpose of this study is to figure out the performance of Multidrop chamber coupling system for the residential ventilation system.

유체-고체 상호작용 해석을 위한 계면요소의 개발 (Development of interface elements for the analysis of fluid-solid problems)

  • 김현규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.442-447
    • /
    • 2008
  • This paper presents a new approach to simulate fluid-solid interaction problems involving non-matching interfaces. The coupling between fluid and solid domains with dissimilar finite element meshes consisting of 4-node quadrilateral elements is achieved by using the interface element method (IEM). Conditions of compatibility between fluid and solid meshes are satisfied exactly by introducing the interface elements defined on interfacing regions. Importantly, a consistent transfer of loads through matching interface element meshes guarantees the present method to be an efficient approach of the solution strategy to fluid-solid interaction problems. An arbitrary Lagrangian-Eulerian (ALE) description is adopted for the fluid domain, while for the solid domain an updated Lagrangian formulation is considered to accommodate finite deformations of an elastic structure. The stabilized equal order velocity-pressure elements for incompressible flows are used in the motion of fluids. Fully coupled equations are solved simultaneously in a single computational domain. Numerical results are presented for fluid-solid interaction problems involving nonmatching interfaces to demonstrate the effectiveness of the methodology.

  • PDF