• 제목/요약/키워드: Fully convolutional Network

Search Result 123, Processing Time 0.031 seconds

A Study on the Performance of Enhanced Deep Fully Convolutional Neural Network Algorithm for Image Object Segmentation in Autonomous Driving Environment (자율주행 환경에서 이미지 객체 분할을 위한 강화된 DFCN 알고리즘 성능연구)

  • Kim, Yeonggwang;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Recently, various studies are being conducted to integrate Image Segmentation into smart factory industries and autonomous driving fields. In particular, Image Segmentation systems using deep learning algorithms have been researched and developed enough to learn from large volumes of data with higher accuracy. In order to use image segmentation in the autonomous driving sector, sufficient amount of learning is needed with large amounts of data and the streaming environment that processes drivers' data in real time is important for the accuracy of safe operation through highways and child protection zones. Therefore, we proposed a novel DFCN algorithm that enhanced existing FCN algorithms that could be applied to various road environments, demonstrated that the performance of the DFCN algorithm improved 1.3% in terms of "loss" value compared to the previous FCN algorithms. Moreover, the proposed DFCN algorithm was applied to the existing U-Net algorithm to maintain the information of frequencies in the image to produce better results, resulting in a better performance than the classical FCN algorithm in the autonomous environment.

Robust Deep Learning-Based Profiling Side-Channel Analysis for Jitter (지터에 강건한 딥러닝 기반 프로파일링 부채널 분석 방안)

  • Kim, Ju-Hwan;Woo, Ji-Eun;Park, So-Yeon;Kim, Soo-Jin;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1271-1278
    • /
    • 2020
  • Deep learning-based profiling side-channel analysis is a powerful analysis method that utilizes the neural network to profile the relationship between the side-channel information and the intermediate value. Since the neural network interprets each point of the signal in a different dimension, jitter makes it much hard that the neural network with dimension-wise weights learns the relationship. This paper shows that replacing the fully-connected layer of the traditional CNN (Convolutional Neural Network) with global average pooling (GAP) allows us to design the inherently robust neural network inherently for jitter. We experimented with the ChipWhisperer-Lite board to demonstrate the proposed method: as a result, the validation accuracy of the CNN with a fully-connected layer was only up to 1.4%; contrastively, the validation accuracy of the CNN with GAP was very high at up to 41.7%.

Animal Face Classification using Dual Deep Convolutional Neural Network

  • Khan, Rafiul Hasan;Kang, Kyung-Won;Lim, Seon-Ja;Youn, Sung-Dae;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.4
    • /
    • pp.525-538
    • /
    • 2020
  • A practical animal face classification system that classifies animals in image and video data is considered as a pivotal topic in machine learning. In this research, we are proposing a novel method of fully connected dual Deep Convolutional Neural Network (DCNN), which extracts and analyzes image features on a large scale. With the inclusion of the state of the art Batch Normalization layer and Exponential Linear Unit (ELU) layer, our proposed DCNN has gained the capability of analyzing a large amount of dataset as well as extracting more features than before. For this research, we have built our dataset containing ten thousand animal faces of ten animal classes and a dual DCNN. The significance of our network is that it has four sets of convolutional functions that work laterally with each other. We used a relatively small amount of batch size and a large number of iteration to mitigate overfitting during the training session. We have also used image augmentation to vary the shapes of the training images for the better learning process. The results demonstrate that, with an accuracy rate of 92.0%, the proposed DCNN outruns its counterparts while causing less computing costs.

Species-level Zooplankton Classifier and Visualization using a Convolutional Neural Network (합성곱 신경망을 이용한 종 수준의 동물플랑크톤 분류기 및 시각화)

  • Man-Ki Jeong;Ho Young Soh;Hyi-Thaek Ceong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.721-732
    • /
    • 2024
  • Species identification of zooplankton is the most basic process in understanding the marine ecosystem and studying global warming. In this study, we propose an convolutional neural network model that can classify females and males of three zooplankton at the species level. First, training data including morphological features is constructed based on microscopic images acquired by researchers. In constructing training data, a data argumentation method that preserves morphological feature information of the target species is applied. Next, we propose a convolutional neural network model in which features can be learned from the constructed learning data. The proposed model minimized the information loss of training image in consideration of high resolution and minimized the number of learning parameters by using the global average polling layer instead of the fully connected layer. In addition, in order to present the generality of the proposed model, the performance was presented based on newly acquired data. Finally, through the visualization of the features extracted from the model, the key features of the classification model were presented.

Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography

  • Hyo Jung Park;Yongbin Shin;Jisuk Park;Hyosang Kim;In Seob Lee;Dong-Woo Seo;Jimi Huh;Tae Young Lee;TaeYong Park;Jeongjin Lee;Kyung Won Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.1
    • /
    • pp.88-100
    • /
    • 2020
  • Objective: We aimed to develop and validate a deep learning system for fully automated segmentation of abdominal muscle and fat areas on computed tomography (CT) images. Materials and Methods: A fully convolutional network-based segmentation system was developed using a training dataset of 883 CT scans from 467 subjects. Axial CT images obtained at the inferior endplate level of the 3rd lumbar vertebra were used for the analysis. Manually drawn segmentation maps of the skeletal muscle, visceral fat, and subcutaneous fat were created to serve as ground truth data. The performance of the fully convolutional network-based segmentation system was evaluated using the Dice similarity coefficient and cross-sectional area error, for both a separate internal validation dataset (426 CT scans from 308 subjects) and an external validation dataset (171 CT scans from 171 subjects from two outside hospitals). Results: The mean Dice similarity coefficients for muscle, subcutaneous fat, and visceral fat were high for both the internal (0.96, 0.97, and 0.97, respectively) and external (0.97, 0.97, and 0.97, respectively) validation datasets, while the mean cross-sectional area errors for muscle, subcutaneous fat, and visceral fat were low for both internal (2.1%, 3.8%, and 1.8%, respectively) and external (2.7%, 4.6%, and 2.3%, respectively) validation datasets. Conclusion: The fully convolutional network-based segmentation system exhibited high performance and accuracy in the automatic segmentation of abdominal muscle and fat on CT images.

Pointwise CNN for 3D Object Classification on Point Cloud

  • Song, Wei;Liu, Zishu;Tian, Yifei;Fong, Simon
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.787-800
    • /
    • 2021
  • Three-dimensional (3D) object classification tasks using point clouds are widely used in 3D modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditional convolutional network due to the irregular data format of point clouds. This paper proposes a pointwise convolution neural network (CNN) structure that can process point cloud data directly without preprocessing. First, a 2D convolutional layer is introduced to percept coordinate information of each point. Then, multiple 2D convolutional layers and a global max pooling layer are applied to extract global features. Finally, based on the extracted features, fully connected layers predict the class labels of objects. We evaluated the proposed pointwise CNN structure on the ModelNet10 dataset. The proposed structure obtained higher accuracy compared to the existing methods. Experiments using the ModelNet10 dataset also prove that the difference in the point number of point clouds does not significantly influence on the proposed pointwise CNN structure.

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

A Study on the Accuracy Improvement of Movie Recommender System Using Word2Vec and Ensemble Convolutional Neural Networks (Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 시스템의 정확도 개선에 관한 연구)

  • Kang, Boo-Sik
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.123-130
    • /
    • 2019
  • One of the most commonly used methods of web recommendation techniques is collaborative filtering. Many studies on collaborative filtering have suggested ways to improve accuracy. This study proposes a method of movie recommendation using Word2Vec and an ensemble convolutional neural networks. First, in the user, movie, and rating information, construct the user sentences and movie sentences. It inputs user sentences and movie sentences into Word2Vec to obtain user vectors and movie vectors. User vectors are entered into user convolution model and movie vectors are input to movie convolution model. The user and the movie convolution models are linked to a fully connected neural network model. Finally, the output layer of the fully connected neural network outputs forecasts of user movie ratings. Experimentation results showed that the accuracy of the technique proposed in this study accuracy of conventional collaborative filtering techniques was improved compared to those of conventional collaborative filtering technique and the technique using Word2Vec and deep neural networks proposed in a similar study.

Damage detection in structures using modal curvatures gapped smoothing method and deep learning

  • Nguyen, Duong Huong;Bui-Tien, T.;Roeck, Guido De;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.47-56
    • /
    • 2021
  • This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.