• 제목/요약/키워드: Fully connected layer

검색결과 90건 처리시간 0.027초

A Neural Net Classifier for Hangeul Recognition (한글 인식을 위한 신경망 분류기의 응용)

  • 최원호;최동혁;이병래;박규태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • 제27권8호
    • /
    • pp.1239-1249
    • /
    • 1990
  • In this paper, using the neural network design techniques, an adaptive Mahalanobis distance classifier(AMDC) is designed. This classifier has three layers: input layer, internal layer and output layer. The connection from input layer to internal layer is fully connected, and that from internal to output layer has partial connection that might be thought as an Oring. If two ormore clusters of patterns of one class are laid apart in the feature space, the network adaptively generate the internal nodes, whhch are corresponding to the subclusters of that class. The number of the output nodes in just same as the number of the classes to classify, on the other hand, the number of the internal nodes is defined by the number of the subclusters, and can be optimized by itself. Using the method of making the subclasses, the different patterns that are of the same class can easily be distinguished from other classes. If additional training is needed after the completion of the traning, the AMDC does not have to repeat the trainging that has already done. To test the performance of the AMDC, the experiments of classifying 500 Hangeuls were done. In experiment, 20 print font sets of Hangeul characters(10,000 cahracters) were used for training, and with 3 sets(1,500 characters), the AMDC was tested for various initial variance \ulcornerand threshold \ulcorner and compared with other statistical or neural classifiers.

  • PDF

A study on estimating the interlayer boundary of the subsurface using a artificial neural network with electrical impedance tomography

  • Sharma, Sunam Kumar;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • 제25권4호
    • /
    • pp.650-663
    • /
    • 2021
  • Subsurface topology estimation is an important factor in the geophysical survey. Electrical impedance tomography is one of the popular methods used for subsurface imaging. The EIT inverse problem is highly nonlinear and ill-posed; therefore, reconstructed conductivity distribution suffers from low spatial resolution. The subsurface region can be approximated as piece-wise separate regions with constant conductivity in each region; therefore, the conductivity estimation problem is transformed to estimate the shape and location of the layer boundary interface. Each layer interface boundary is treated as an open boundary that is described using front points. The subsurface domain contains multi-layers with very complex configurations, and, in such situations, conventional methods such as the modified Newton Raphson method fail to provide the desired solution. Therefore, in this work, we have implemented a 7-layer artificial neural network (ANN) as an inverse problem algorithm to estimate the front points that describe the multi-layer interface boundaries. An ANN model consisting of input, output, and five fully connected hidden layers are trained for interlayer boundary reconstruction using training data that consists of pairs of voltage measurements of the subsurface domain with three-layer configuration and the corresponding front points of interface boundaries. The results from the proposed ANN model are compared with the gravitational search algorithm (GSA) for interlayer boundary estimation, and the results show that ANN is successful in estimating the layer boundaries with good accuracy.

Facial Expression Classification Using Deep Convolutional Neural Network

  • Choi, In-kyu;Ahn, Ha-eun;Yoo, Jisang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.485-492
    • /
    • 2018
  • In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. The proposed structure has general classification performance for any environment or subject. For this purpose, we collect a variety of databases and organize the database into six expression classes such as 'expressionless', 'happy', 'sad', 'angry', 'surprised' and 'disgusted'. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. In the existing CNN structure, the optimal structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of nodes of fully-connected layer. The experimental results show good classification performance compared to the state-of-the-arts in experiments of the cross validation and the cross database. Also, compared to other conventional models, it is confirmed that the proposed structure is superior in classification performance with less execution time.

Residual Learning Based CNN for Gesture Recognition in Robot Interaction

  • Han, Hua
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.385-398
    • /
    • 2021
  • The complexity of deep learning models affects the real-time performance of gesture recognition, thereby limiting the application of gesture recognition algorithms in actual scenarios. Hence, a residual learning neural network based on a deep convolutional neural network is proposed. First, small convolution kernels are used to extract the local details of gesture images. Subsequently, a shallow residual structure is built to share weights, thereby avoiding gradient disappearance or gradient explosion as the network layer deepens; consequently, the difficulty of model optimisation is simplified. Additional convolutional neural networks are used to accelerate the refinement of deep abstract features based on the spatial importance of the gesture feature distribution. Finally, a fully connected cascade softmax classifier is used to complete the gesture recognition. Compared with the dense connection multiplexing feature information network, the proposed algorithm is optimised in feature multiplexing to avoid performance fluctuations caused by feature redundancy. Experimental results from the ISOGD gesture dataset and Gesture dataset prove that the proposed algorithm affords a fast convergence speed and high accuracy.

Accident Detection System in Tunnel using CCTV (CCTV를 이용한 터널내 사고감지 시스템)

  • Lee, Se-Hoon;Lee, Seung-Yeob;Noh, Yeong-Hun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.3-4
    • /
    • 2021
  • 폐쇄된 터널 내부에서는 사고가 일어날 경우 외부에서는 터널 내 상황을 알 수가 없어 경미한 사고라 하더라도 대형 후속 2차 사고로 이어질 가능성이 크다. 또한영상탐지로사고 상황의 오검출을 줄이기 위해서, 본 연구에서는기존의 많은 CNN 모델 중 보유한 데이터에 가장 적합한 모델을 선택하는 과정에서 가장 좋은 성능을 보인 VGG16 모델을 전이학습 시키고 fully connected layer의 일부 layer에 Dropout을 적용시켜 Overfitting을일부방지하는 CNN 모델을 생성한 뒤Yolo를 이용한 영상 내 객체인식, OpenCV를 이용한 영상 프레임 내에서 객체의ROI를 추출하고이를 CNN 모델과 비교하여오검출을 줄이면서 사고를 검출하는 시스템을 제안하였다.

  • PDF

Image Retrieval Based on the Weighted and Regional Integration of CNN Features

  • Liao, Kaiyang;Fan, Bing;Zheng, Yuanlin;Lin, Guangfeng;Cao, Congjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.894-907
    • /
    • 2022
  • The features extracted by convolutional neural networks are more descriptive of images than traditional features, and their convolutional layers are more suitable for retrieving images than are fully connected layers. The convolutional layer features will consume considerable time and memory if used directly to match an image. Therefore, this paper proposes a feature weighting and region integration method for convolutional layer features to form global feature vectors and subsequently use them for image matching. First, the 3D feature of the last convolutional layer is extracted, and the convolutional feature is subsequently weighted again to highlight the edge information and position information of the image. Next, we integrate several regional eigenvectors that are processed by sliding windows into a global eigenvector. Finally, the initial ranking of the retrieval is obtained by measuring the similarity of the query image and the test image using the cosine distance, and the final mean Average Precision (mAP) is obtained by using the extended query method for rearrangement. We conduct experiments using the Oxford5k and Paris6k datasets and their extended datasets, Paris106k and Oxford105k. These experimental results indicate that the global feature extracted by the new method can better describe an image.

Speech emotion recognition using attention mechanism-based deep neural networks (주목 메커니즘 기반의 심층신경망을 이용한 음성 감정인식)

  • Ko, Sang-Sun;Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • 제36권6호
    • /
    • pp.407-412
    • /
    • 2017
  • In this paper, we propose a speech emotion recognition method using a deep neural network based on the attention mechanism. The proposed method consists of a combination of CNN (Convolution Neural Networks), GRU (Gated Recurrent Unit), DNN (Deep Neural Networks) and attention mechanism. The spectrogram of the speech signal contains characteristic patterns according to the emotion. Therefore, we modeled characteristic patterns according to the emotion by applying the tuned Gabor filters as convolutional filter of typical CNN. In addition, we applied the attention mechanism with CNN and FC (Fully-Connected) layer to obtain the attention weight by considering context information of extracted features and used it for emotion recognition. To verify the proposed method, we conducted emotion recognition experiments on six emotions. The experimental results show that the proposed method achieves higher performance in speech emotion recognition than the conventional methods.

A Study on the Accuracy Improvement of Movie Recommender System Using Word2Vec and Ensemble Convolutional Neural Networks (Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 시스템의 정확도 개선에 관한 연구)

  • Kang, Boo-Sik
    • Journal of Digital Convergence
    • /
    • 제17권1호
    • /
    • pp.123-130
    • /
    • 2019
  • One of the most commonly used methods of web recommendation techniques is collaborative filtering. Many studies on collaborative filtering have suggested ways to improve accuracy. This study proposes a method of movie recommendation using Word2Vec and an ensemble convolutional neural networks. First, in the user, movie, and rating information, construct the user sentences and movie sentences. It inputs user sentences and movie sentences into Word2Vec to obtain user vectors and movie vectors. User vectors are entered into user convolution model and movie vectors are input to movie convolution model. The user and the movie convolution models are linked to a fully connected neural network model. Finally, the output layer of the fully connected neural network outputs forecasts of user movie ratings. Experimentation results showed that the accuracy of the technique proposed in this study accuracy of conventional collaborative filtering techniques was improved compared to those of conventional collaborative filtering technique and the technique using Word2Vec and deep neural networks proposed in a similar study.

Study on Detection Technique for Sea Fog by using CCTV Images and Convolutional Neural Network (CCTV 영상과 합성곱 신경망을 활용한 해무 탐지 기법 연구)

  • Kim, Na-Kyeong;Bak, Su-Ho;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Park, Mi-So;Kim, Bo-Ram;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제15권6호
    • /
    • pp.1081-1088
    • /
    • 2020
  • In this paper, the method of detecting sea fog through CCTV image is proposed based on convolutional neural networks. The study data randomly extracted 1,0004 images, sea-fog and not sea-fog, from a total of 11 ports or beaches (Busan Port, Busan New Port, Pyeongtaek Port, Incheon Port, Gunsan Port, Daesan Port, Mokpo Port, Yeosu Gwangyang Port, Ulsan Port, Pohang Port, and Haeundae Beach) based on 1km of visibility. 80% of the total 1,0004 datasets were extracted and used for learning the convolutional neural network model. The model has 16 convolutional layers and 3 fully connected layers, and a convolutional neural network that performs Softmax classification in the last fully connected layer is used. Model accuracy evaluation was performed using the remaining 20%, and the accuracy evaluation result showed a classification accuracy of about 96%.

Binary classification of bolts with anti-loosening coating using transfer learning-based CNN (전이학습 기반 CNN을 통한 풀림 방지 코팅 볼트 이진 분류에 관한 연구)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제22권2호
    • /
    • pp.651-658
    • /
    • 2021
  • Because bolts with anti-loosening coatings are used mainly for joining safety-related components in automobiles, accurate automatic screening of these coatings is essential to detect defects efficiently. The performance of the convolutional neural network (CNN) used in a previous study [Identification of bolt coating defects using CNN and Grad-CAM] increased with increasing number of data for the analysis of image patterns and characteristics. On the other hand, obtaining the necessary amount of data for coated bolts is difficult, making training time-consuming. In this paper, resorting to the same VGG16 model as in a previous study, transfer learning was applied to decrease the training time and achieve the same or better accuracy with fewer data. The classifier was trained, considering the number of training data for this study and its similarity with ImageNet data. In conjunction with the fully connected layer, the highest accuracy was achieved (95%). To enhance the performance further, the last convolution layer and the classifier were fine-tuned, which resulted in a 2% increase in accuracy (97%). This shows that the learning time can be reduced by transfer learning and fine-tuning while maintaining a high screening accuracy.