• 제목/요약/키워드: Fully Autonomous Vehicle

검색결과 34건 처리시간 0.021초

도로 거칠기와 차량의 승객 상태를 활용한 DSJS(Driving Situation Judgment System) 설계 (The Driving Situation Judgment System(DSJS) using road roughness and vehicle passenger conditions)

  • 손수락;정이나;안희학
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.223-230
    • /
    • 2021
  • 현재 자율주행차량은 테스트 이후 상용화를 눈앞에 두고 있다. 그러나 아직 자율주행차량이 완벽히 상용화되지 않았음에도 81건의 사고가 발생했으며, 사고를 피하기 위한 차량의 주행 방식은 LiDAR에 많이 의존하고 있다. 현재 상용화된 3레벨 자율주행차량이 4레벨 자율주행차량으로 발전하기 위해서는 기존에 수집되는 정보보다 더 많은 정보를 수집해야만 한다. 따라서 본 논문에서는 기존의 자율주행차량에서 수집하는 정보인 도로 정보, 기상정보를 포함하여 차량이 주행 중인 도로의 거칠기와 자기 자신 및 주변 차량의 탑승객 상태를 정확하게 인식하여 차량이 처한 위기 상황을 정확하게 계산하는 Driving Situation Judgment System (DSJS)을 제안한다. DSJS의 PDM에 대한 실험 결과, PDM은 기존 차량의 탑승객 인식 시스템보다 평균적으로 15.52% 더 정확하게 탑승객을 분류할 수 있었다. 본 연구는 기존 3단계 자율주행차량이 수집하는 데이터보다 더 다양한 종류를 수집하여 4단계 자율주행차량을 달성하는 기초연구가 될 수 있다.

제4차 산업혁명 시대의 무인 이동체를 둘러싼 법적 문제점 연구 - 자율주행자동차와 드론을 중심으로 - (A Study on Legal Problems over Unmanned Vehicle of the Fourth Industrial Revolution - Focusing on the Autonomous Driving Vehicle and Drone -)

  • 계경문
    • 한국전자파학회논문지
    • /
    • 제28권7호
    • /
    • pp.519-527
    • /
    • 2017
  • 자율주행자동차의 안전성에 관한 신뢰의 문제는 관련 산업의 수요 창출과 관련하여 매우 중요한 문제이다. 신뢰 확보를 위해서는 우선 자율주행자동차의 사고발생시 법적 책임문제의 연구가 선행되어야 한다. 사고 발생 시의 문제로 가장 시급한 민 형사상의 책임귀속 문제에 있어서 민사상으로는 "제조물책임법" 하에서 자동차 제작자에게 책임을 물을 수 있을 것이나, 형사상으로는 행위자 책임을 근본으로 하는 현행 법체계에서는 사람에게 책임을 묻기가 어려운 문제이다. 이러한 문제들을 해결하기 위한 "자율주행자동차 특별법"의 제정을 제안하는 바이며, 또한 (완전) 자율주행자동차가 운행하는데 필요한 각종 시스템 또는 인프라의 구축과 그 운용에 따른 국가 또는 공적인 "인증" 등 제도의 구축도 필요하다. 드론의 경우, 그 비행의 특성상 영상 촬영장치를 장착하고 비행할 때, 개인의 정보 및 위치 정보까지 수집되는 법적인 문제점을 내포하고 있다.

완전 자율주행을 위한 도로 상태 기반 제동 강도 계산 시스템 (The Road condition-based Braking Strength Calculation System for a fully autonomous driving vehicle)

  • 손수락;정이나
    • 인터넷정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.53-59
    • /
    • 2022
  • 3단계 자율주행 차량 이후, 4, 5단계의 자율주행 기술은 차량의 완벽한 주행뿐만 아니라 탑승객의 상태를 최적으로 유지하기 위해 노력하고 있다. 그러나 현재 자율주행 기술은 LiDAR, 전방 카메라 등 시각적 정보에 과하게 의존하기 때문에 지정된 도로 이외의 도로에서 완벽하게 자율주행을 실행하기 힘들다. 따라서 본 논문은 차량이 시각 정보 외의 데이터를 사용하여 도로의 상태를 분류하고, 도로 상태와 주행 상태에 따라 최적의 제동 강도를 계산하는 BSCS (Braking Strength Calculation System)를 제안한다. 본 논문에서 제안하는 BSCS는 KNN 알고리즘을 기반으로 도로의 상태를 분류하는 RCDM (Road Condition Definition Module)과 RCDM의 결과와 현재 주행 상태를 통해 주행 중 최적의 제동 강도를 계산하는 BSCM (Braking Strength Calculation Module)로 구성된다. 본 논문의 실험 결과, KNN 알고리즘에 가장 적합한 K의 수를 찾을 수 있었고, 비지도 학습인 K-means 알고리즘보다 본 논문에서 제안한 RCDM이 더 정확한 것이 증명되었다. 해당 논문의 BSCS는 시각 정보뿐만 아니라 서스펜션에 가해지는 진동 데이터를 사용함으로써, 시각 정보가 제한되는 여러 환경에서 자율주행 차량의 제동을 더 원활하게 만들 수 있다.

반자율 무인잠수정의 제어기 설계 및 시뮬레이션 (Controller Design and Simulation of a Semi-Autonomous Underwater Vehide)

  • 전봉환;이판묵;홍석원
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.57-62
    • /
    • 2003
  • This paper describes the design and simulation of a multivariable optimal control system for the combined speed, heading and depth control of a Semi-Autonomous Underwater Vehicle (SAUV) developed in Korea Ocean Research and Development Institute (KRODI). The SAUV is a test-bed for the evaluation of the navigation and manipulator technologies developed for a mine disposal vehicle (MDV) in military use and for a light working underwater vehicle in scientific use. The vehicle was designed to control its cruising speed, heading and depth with 4 horizontal thrusters installed at the rear of the hull. Therefore, the decoupled control methods are limited to apply to the SAUV because the thrust forces are highly coupled with the surging, yawing, and pitching motion of the vehicle. The multivariable Linear Quadratic (LQ) control method is chosen to control steering and diving in variable speed motion automatically. A series of simulation is carried out with fully nonlinear six degree of freedom dynamic model to validate the controller.

  • PDF

블록체인을 이용한 자율주행 차량의 포렌식 연구 (Forensic study of autonomous vehicle using blockchain)

  • 강장묵
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.209-214
    • /
    • 2023
  • 장래 국내외 자율주행 차량이 보급되면, 자율주행 차량의 사고 역시 발생 빈도가 늘어날 전망이다. 특히, 완전자율주행 자동차가 운행할 경우, 자동차의 사고 자체뿐만 아니라 운행 중 승객 간의 성폭력, 폭행, 사기 등 여러 가지 형사/민사상 문제가 발생할 수 있다. 이 경우, 자율주행차량의 운행 사고와 차량 내 승객의 사고에 대한 포렌식 역시 변화할 전밍이다. 이 글은 자율주행차량의 보안 위협에 대한 유형, 블록체인 기술을 이용한 증거 데이터의 무결성 유지 방안, 디지털 포렌식의 연구를 고찰하였다. 이를 통해 블록체인 기술을 활용한 자율주행 차량에서 발생할 위협과 다양한 사고 유형 별 포렌식 기법 등을 시나리오식으로 기술할 수 있었다. 본 연구를 통해 자율 주행 차량 대상 취약점, 공격에 대응하기 위한 국내외 웹사이트의 포렌식 보안 기술 조사 및 연구기관, 정보보안기업의 블록체인 보안 연구를 조사하여 사고 전/후 자율주행 차량의 포렌식을 돕는 블록체인 기법을 제안하였다.

자율주행차 사고심각도의 영향요인 분석에 관한 연구: 사고데이터와 교통인프라 정보를 결합하여 (A Study on Factors Influencing the Severity of Autonomous Vehicle Accidents: Combining Accident Data and Transportation Infrastructure Information)

  • 김창훈;김정화
    • 한국ITS학회 논문지
    • /
    • 제22권5호
    • /
    • pp.200-215
    • /
    • 2023
  • 자율주행 기술이 고도로 발전하고, 관련 시장이 급격하게 성장하고 있어 머지않은 시기 내에 완전 자율주행 시대가 도래할 것으로 예상된다. 한편, 자율주행 기술의 발전과 함께 기술 안전성에 대한 의문이 제기되고 있으며, 관련 사고 소식이 보도되면서 기술에 대한 우려는 증대되고 있다. 자율주행차의 안전성 향상을 위해, 사고 사례를 분석하고 사고 원인을 규명하는 행위가 선행될 필요가 있다. 이에, 본 연구는 자율주행 사고데이터를 통해 자율차 사고의 심각도에 대한 영향요인을 분석하였다. 연구 데이터는 CA DMV에서 수집·배포하고 있는 자율주행차 사고 레포트를 중심으로 사고 지점의 공간 정보, 교통 정보를 사용하였다. 중점 데이터가 사고 레포트임을 고려할 때, 사건 발생 횟수의 기댓값이 반영될 수 있도록 포아송 회귀 분석을 사용하여 모델링을 진행하였다. 모형 분석 결과, 자율주행차 사고 심각도는 조도가 낮을 때, 자전거·버스 전용 차로가 존재할 때, 보행자와 자전거 사고 이력이 많은 지역에서 증가한다는 결과가 도출되었다. 본 연구 결과는 향후, 자율주행차 안전성 개선을 위한 알고리즘 개발 및 관련 교통 인프라 설치를 위한 기초자료로 활용될 수 있을 것이다.

차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계 (A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning)

  • 손수락;정이나
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.128-133
    • /
    • 2021
  • 현재 자율주행차량 시장은 3레벨 자율주행차량을 상용화하고 있으나, 안정성의 문제로 완전 자율주행 중에도 사고가 발생할 가능성이 있다. 실제로 자율주행차량은 81건의 사고를 기록하고 있다. 3레벨과 다르게 4레벨 이후의 자율주행차량은 긴급상황을 스스로 판단하고 대처해야 하기 때문이다. 따라서 본 논문에서는 CNN을 통하여 차량 외부의 정보를 수집하여 저장하고, 저장된 정보와 차량 센서 데이터를 이용하여 차량이 처한 위기 상황을 0~1 사이의 수치로 출력하는 차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템을 제안한다. 차량 위기 감지 시스템은 CNN기반 신경망 모델을 사용하여 주변 차량과 보행자 데이터를 수집하는 차량 외부 상황 수집 모듈과 차량 외부 상황 수집 모듈의 출력과 차량 내부 센서 데이터를 이용하여 차량이 처한 위기 상황을 수치화하는 차량 위기 상황 판단 모듈로 구성된다. 실험 결과, VESCM의 평균 연산 시간은 55ms 였고, R-CNN은 74ms, CNN은 101ms였다. 특히, R-CNN은 보행자수가 적을 때 VESCM과 비슷한 연산 시간을 보이지만, 보행자 수가 많아 질수록 VESCM보다 많은 연산 시간을 소요했다. 평균적으로 VESCM는 R-CNN보다 25.68%, CNN보다 45.54% 더 빠른 연산 시간을 가졌고, 세 모델의 정확도는 모두 80% 이하로 감소하지 않으며 높은 정확도를 보였다.

반자율주행 차량의 제어권 전환 요청(TOR) 인터랙션 디자인 연구 : HDD와 HUD 비교 실험을 중심으로 (Interaction Design of Take-Over Request for Semi-Autonomous Driving Vehicle : Comparative Experiment between HDD and HUD)

  • 김택수;최송아;최준호
    • 디자인융복합연구
    • /
    • 제17권4호
    • /
    • pp.17-29
    • /
    • 2018
  • 완전 자율주행 단계에 이르기 전까지 부분 자율주행 차량에서는 시스템이 특정 상황에서 운전자에게 직접 운전을 하도록 요청하는 제어권 전환 요청(TOR)이 필수적이다. 이 연구의 목적은 인간-자동차 인터랙션 방식 중 HDD(Head-Down Display)보다 HUD(Head-Up Display)가 제어권 전환 요청 시 사용자 경험 인식에서 더 유리한지 비교하는 것이다. 운전 시뮬레이터 실험을 통해 참가자가 자율주행 상황에서 부가적 과업인 게임을 하다가 제어권 전환 요청을 인지하면 직접 운전을 수행하도록 하였다. 실험 결과, 반응시간과 주관적 작업 부하에서는 차이가 없었으나, '사용 용이성'과 '만족도'에서 HUD 방식이 HDD보다 더 우수한 것으로 나타났다. 자율 주행시 HUD를 통해 부가적 과업을 하도록 디자인하는 것이 제어권 전환 요청 기능의 사용자 경험을 개선하는 효과가 있었다. 이 연구는 자율주행 맥락에서의 사용자 경험 디자인 가이드라인 설정을 위한 실증 사례를 제시했다는 점에서 의의가 있다.

3D Global Dynamic Window Approach for Navigation of Autonomous Underwater Vehicles

  • Tusseyeva, Inara;Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권2호
    • /
    • pp.91-99
    • /
    • 2013
  • An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.

자율주행 개인화를 위한 순환 최소자승 기반 융합형 주행특성 구분 알고리즘 (A RLS-based Convergent Algorithm for Driving Characteristic Classification for Personalized Autonomous Driving)

  • 오광석
    • 한국융합학회논문지
    • /
    • 제8권9호
    • /
    • pp.285-292
    • /
    • 2017
  • 본 논문은 자율주행 개인화를 위한 순환 최소자승 기반 융합형 종방향 주행특성 구분 알고리즘에 관한 연구이다. 최근 자율주행 기술은 Level 4 완전 자율주행 단계를 위해 다양한 연구가 수행되고 있다. 자율주행 자동차의 상용화를 위해서는 탑승자의 자율주행에 대한 이질감을 최소화할 수 있어야 하며 이를 위해 자율주행 개인화 기술이 필요하다. 이 문제를 해결하기 위해 본 연구에서는 운전자의 종방향 주행특성을 수학적으로 표현하고 순환 최소자승 기법 기반 실 주행 데이터를 이용하여 주행특성을 도출하는 알고리즘을 제안하였다. 두 명의 실제 운전자 데이터를 이용하여 종방향 주행특성을 도출하였으며 두 명의 운전자를 구분하기 위해 가설검정 기반 확률적 구분 알고리즘을 적용하였다. 제안된 종방향 주행특성 도출 및 구분 알고리즘은 개별 운전자의 주행특성을 합리적으로 나타낼 수 있었으며 가설검정 기반 확률적 구분기법에 의해 주행특성이 구분될 수 있음을 확인하였다.