현재 자율주행차량은 테스트 이후 상용화를 눈앞에 두고 있다. 그러나 아직 자율주행차량이 완벽히 상용화되지 않았음에도 81건의 사고가 발생했으며, 사고를 피하기 위한 차량의 주행 방식은 LiDAR에 많이 의존하고 있다. 현재 상용화된 3레벨 자율주행차량이 4레벨 자율주행차량으로 발전하기 위해서는 기존에 수집되는 정보보다 더 많은 정보를 수집해야만 한다. 따라서 본 논문에서는 기존의 자율주행차량에서 수집하는 정보인 도로 정보, 기상정보를 포함하여 차량이 주행 중인 도로의 거칠기와 자기 자신 및 주변 차량의 탑승객 상태를 정확하게 인식하여 차량이 처한 위기 상황을 정확하게 계산하는 Driving Situation Judgment System (DSJS)을 제안한다. DSJS의 PDM에 대한 실험 결과, PDM은 기존 차량의 탑승객 인식 시스템보다 평균적으로 15.52% 더 정확하게 탑승객을 분류할 수 있었다. 본 연구는 기존 3단계 자율주행차량이 수집하는 데이터보다 더 다양한 종류를 수집하여 4단계 자율주행차량을 달성하는 기초연구가 될 수 있다.
자율주행자동차의 안전성에 관한 신뢰의 문제는 관련 산업의 수요 창출과 관련하여 매우 중요한 문제이다. 신뢰 확보를 위해서는 우선 자율주행자동차의 사고발생시 법적 책임문제의 연구가 선행되어야 한다. 사고 발생 시의 문제로 가장 시급한 민 형사상의 책임귀속 문제에 있어서 민사상으로는 "제조물책임법" 하에서 자동차 제작자에게 책임을 물을 수 있을 것이나, 형사상으로는 행위자 책임을 근본으로 하는 현행 법체계에서는 사람에게 책임을 묻기가 어려운 문제이다. 이러한 문제들을 해결하기 위한 "자율주행자동차 특별법"의 제정을 제안하는 바이며, 또한 (완전) 자율주행자동차가 운행하는데 필요한 각종 시스템 또는 인프라의 구축과 그 운용에 따른 국가 또는 공적인 "인증" 등 제도의 구축도 필요하다. 드론의 경우, 그 비행의 특성상 영상 촬영장치를 장착하고 비행할 때, 개인의 정보 및 위치 정보까지 수집되는 법적인 문제점을 내포하고 있다.
3단계 자율주행 차량 이후, 4, 5단계의 자율주행 기술은 차량의 완벽한 주행뿐만 아니라 탑승객의 상태를 최적으로 유지하기 위해 노력하고 있다. 그러나 현재 자율주행 기술은 LiDAR, 전방 카메라 등 시각적 정보에 과하게 의존하기 때문에 지정된 도로 이외의 도로에서 완벽하게 자율주행을 실행하기 힘들다. 따라서 본 논문은 차량이 시각 정보 외의 데이터를 사용하여 도로의 상태를 분류하고, 도로 상태와 주행 상태에 따라 최적의 제동 강도를 계산하는 BSCS (Braking Strength Calculation System)를 제안한다. 본 논문에서 제안하는 BSCS는 KNN 알고리즘을 기반으로 도로의 상태를 분류하는 RCDM (Road Condition Definition Module)과 RCDM의 결과와 현재 주행 상태를 통해 주행 중 최적의 제동 강도를 계산하는 BSCM (Braking Strength Calculation Module)로 구성된다. 본 논문의 실험 결과, KNN 알고리즘에 가장 적합한 K의 수를 찾을 수 있었고, 비지도 학습인 K-means 알고리즘보다 본 논문에서 제안한 RCDM이 더 정확한 것이 증명되었다. 해당 논문의 BSCS는 시각 정보뿐만 아니라 서스펜션에 가해지는 진동 데이터를 사용함으로써, 시각 정보가 제한되는 여러 환경에서 자율주행 차량의 제동을 더 원활하게 만들 수 있다.
This paper describes the design and simulation of a multivariable optimal control system for the combined speed, heading and depth control of a Semi-Autonomous Underwater Vehicle (SAUV) developed in Korea Ocean Research and Development Institute (KRODI). The SAUV is a test-bed for the evaluation of the navigation and manipulator technologies developed for a mine disposal vehicle (MDV) in military use and for a light working underwater vehicle in scientific use. The vehicle was designed to control its cruising speed, heading and depth with 4 horizontal thrusters installed at the rear of the hull. Therefore, the decoupled control methods are limited to apply to the SAUV because the thrust forces are highly coupled with the surging, yawing, and pitching motion of the vehicle. The multivariable Linear Quadratic (LQ) control method is chosen to control steering and diving in variable speed motion automatically. A series of simulation is carried out with fully nonlinear six degree of freedom dynamic model to validate the controller.
장래 국내외 자율주행 차량이 보급되면, 자율주행 차량의 사고 역시 발생 빈도가 늘어날 전망이다. 특히, 완전자율주행 자동차가 운행할 경우, 자동차의 사고 자체뿐만 아니라 운행 중 승객 간의 성폭력, 폭행, 사기 등 여러 가지 형사/민사상 문제가 발생할 수 있다. 이 경우, 자율주행차량의 운행 사고와 차량 내 승객의 사고에 대한 포렌식 역시 변화할 전밍이다. 이 글은 자율주행차량의 보안 위협에 대한 유형, 블록체인 기술을 이용한 증거 데이터의 무결성 유지 방안, 디지털 포렌식의 연구를 고찰하였다. 이를 통해 블록체인 기술을 활용한 자율주행 차량에서 발생할 위협과 다양한 사고 유형 별 포렌식 기법 등을 시나리오식으로 기술할 수 있었다. 본 연구를 통해 자율 주행 차량 대상 취약점, 공격에 대응하기 위한 국내외 웹사이트의 포렌식 보안 기술 조사 및 연구기관, 정보보안기업의 블록체인 보안 연구를 조사하여 사고 전/후 자율주행 차량의 포렌식을 돕는 블록체인 기법을 제안하였다.
자율주행 기술이 고도로 발전하고, 관련 시장이 급격하게 성장하고 있어 머지않은 시기 내에 완전 자율주행 시대가 도래할 것으로 예상된다. 한편, 자율주행 기술의 발전과 함께 기술 안전성에 대한 의문이 제기되고 있으며, 관련 사고 소식이 보도되면서 기술에 대한 우려는 증대되고 있다. 자율주행차의 안전성 향상을 위해, 사고 사례를 분석하고 사고 원인을 규명하는 행위가 선행될 필요가 있다. 이에, 본 연구는 자율주행 사고데이터를 통해 자율차 사고의 심각도에 대한 영향요인을 분석하였다. 연구 데이터는 CA DMV에서 수집·배포하고 있는 자율주행차 사고 레포트를 중심으로 사고 지점의 공간 정보, 교통 정보를 사용하였다. 중점 데이터가 사고 레포트임을 고려할 때, 사건 발생 횟수의 기댓값이 반영될 수 있도록 포아송 회귀 분석을 사용하여 모델링을 진행하였다. 모형 분석 결과, 자율주행차 사고 심각도는 조도가 낮을 때, 자전거·버스 전용 차로가 존재할 때, 보행자와 자전거 사고 이력이 많은 지역에서 증가한다는 결과가 도출되었다. 본 연구 결과는 향후, 자율주행차 안전성 개선을 위한 알고리즘 개발 및 관련 교통 인프라 설치를 위한 기초자료로 활용될 수 있을 것이다.
현재 자율주행차량 시장은 3레벨 자율주행차량을 상용화하고 있으나, 안정성의 문제로 완전 자율주행 중에도 사고가 발생할 가능성이 있다. 실제로 자율주행차량은 81건의 사고를 기록하고 있다. 3레벨과 다르게 4레벨 이후의 자율주행차량은 긴급상황을 스스로 판단하고 대처해야 하기 때문이다. 따라서 본 논문에서는 CNN을 통하여 차량 외부의 정보를 수집하여 저장하고, 저장된 정보와 차량 센서 데이터를 이용하여 차량이 처한 위기 상황을 0~1 사이의 수치로 출력하는 차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템을 제안한다. 차량 위기 감지 시스템은 CNN기반 신경망 모델을 사용하여 주변 차량과 보행자 데이터를 수집하는 차량 외부 상황 수집 모듈과 차량 외부 상황 수집 모듈의 출력과 차량 내부 센서 데이터를 이용하여 차량이 처한 위기 상황을 수치화하는 차량 위기 상황 판단 모듈로 구성된다. 실험 결과, VESCM의 평균 연산 시간은 55ms 였고, R-CNN은 74ms, CNN은 101ms였다. 특히, R-CNN은 보행자수가 적을 때 VESCM과 비슷한 연산 시간을 보이지만, 보행자 수가 많아 질수록 VESCM보다 많은 연산 시간을 소요했다. 평균적으로 VESCM는 R-CNN보다 25.68%, CNN보다 45.54% 더 빠른 연산 시간을 가졌고, 세 모델의 정확도는 모두 80% 이하로 감소하지 않으며 높은 정확도를 보였다.
완전 자율주행 단계에 이르기 전까지 부분 자율주행 차량에서는 시스템이 특정 상황에서 운전자에게 직접 운전을 하도록 요청하는 제어권 전환 요청(TOR)이 필수적이다. 이 연구의 목적은 인간-자동차 인터랙션 방식 중 HDD(Head-Down Display)보다 HUD(Head-Up Display)가 제어권 전환 요청 시 사용자 경험 인식에서 더 유리한지 비교하는 것이다. 운전 시뮬레이터 실험을 통해 참가자가 자율주행 상황에서 부가적 과업인 게임을 하다가 제어권 전환 요청을 인지하면 직접 운전을 수행하도록 하였다. 실험 결과, 반응시간과 주관적 작업 부하에서는 차이가 없었으나, '사용 용이성'과 '만족도'에서 HUD 방식이 HDD보다 더 우수한 것으로 나타났다. 자율 주행시 HUD를 통해 부가적 과업을 하도록 디자인하는 것이 제어권 전환 요청 기능의 사용자 경험을 개선하는 효과가 있었다. 이 연구는 자율주행 맥락에서의 사용자 경험 디자인 가이드라인 설정을 위한 실증 사례를 제시했다는 점에서 의의가 있다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제13권2호
/
pp.91-99
/
2013
An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.
본 논문은 자율주행 개인화를 위한 순환 최소자승 기반 융합형 종방향 주행특성 구분 알고리즘에 관한 연구이다. 최근 자율주행 기술은 Level 4 완전 자율주행 단계를 위해 다양한 연구가 수행되고 있다. 자율주행 자동차의 상용화를 위해서는 탑승자의 자율주행에 대한 이질감을 최소화할 수 있어야 하며 이를 위해 자율주행 개인화 기술이 필요하다. 이 문제를 해결하기 위해 본 연구에서는 운전자의 종방향 주행특성을 수학적으로 표현하고 순환 최소자승 기법 기반 실 주행 데이터를 이용하여 주행특성을 도출하는 알고리즘을 제안하였다. 두 명의 실제 운전자 데이터를 이용하여 종방향 주행특성을 도출하였으며 두 명의 운전자를 구분하기 위해 가설검정 기반 확률적 구분 알고리즘을 적용하였다. 제안된 종방향 주행특성 도출 및 구분 알고리즘은 개별 운전자의 주행특성을 합리적으로 나타낼 수 있었으며 가설검정 기반 확률적 구분기법에 의해 주행특성이 구분될 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.