• 제목/요약/키워드: Full-scale SBR

검색결과 8건 처리시간 0.019초

하수처리장에서의 암모니아 전환 미생물군의 생태학적 연구 (Microbial ecology of the anaerobic and aerobic ammonia-oxidizers in full-scale wastewater treatment systems)

  • 박홍근;김영모;이재우;김성표
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.399-408
    • /
    • 2012
  • The overall goal of this study was to characterize and quantify ammonia-oxidizing bacteria (AOB) in four different full-scale sequence batch reactor (SBR) wastewater treatment plants. Also, this study focused on assessing the occurrence of the alternative ammonia-oxidizing microbes such as anammox (anaerobic ammonia oxidation) bacteria (AMX) and ammonia-oxidizing archaea (AOA) in these systems. Based on total AOB numbers and the estimated cell density in the mixed liquor samples, AOB constituted 0.3 - 1.8% of the total bacterial population in the four WWTPs. Based on clone library, Nitrosomonas ureae-like AOB were dominant in plant A and B, while plant C and D had Nitrosomonas nitrosa-like AOB as major AOB group. The four different AMX primer sets targeting AMX 16S rRNA gene produced PCR amplicons distantly related to Chlamydia and Planctomycetales group bacteria. However, it was not clear these groups of bacteria perform anammox reaction in the SBR plants. Also, molecular evidence of AOA was found in one of the SBR plants, with a sequence located in the deep branch of the sediment creanarchaeota group.

분류식 하수관거로의 전환시 유입하수의 성상 변화 및 선회와류식 SBR공법의 처리 특성 (Change in Influent Concentration of Domestic Wastewater from Separated Sewer and Biological Nitrogen and Phosphorus Removal of a Full Scale Air-vent SBR)

  • 이장희;강호
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.63-70
    • /
    • 2012
  • This study was carried out to investigate change in influent concentration of domestic wastewater flowed from a newly constructed separate sewer system (SSS) and biological nutrients removal efficiency of a full scale Air-vent sequential batch reactor (SBR, $600m^3/d$). The average concentration of $BOD_5$, SS, T-N and T-P from SSS were 246.5 mg/L, 231.6 mg/L, 42.974 mg/L, 5.360 mg/L, respectively which corresponds to 2.2times, 1.2times, 1.8times and 2.1times higher than those from the conventional combined sewer system (CSS). The removal efficiency of $BOD_5$, SS, T-N, and T-P for the Air-vent SBR operated with influent from SSS averaged 99.1%, 99.0%, 91.2%, and 93.5%, respectively. Especially the respective nitrogen and phosphorus removal was 15% greater than that of the SBR operated with influent from CSS. Simultaneous nitrification and denitrification (SND) was observed in an aerobic reactor(II) as a result of DO concentration gradient developed along the depth by the Air-vent system. In order to achieve T-N removal greater than 90%, the C/N ratio should be over 6.0 and the difference between $BOD_5$ loading and nitrogen loading rate be over 100 kg/day (0.130 kg $T-N/m^3{\cdot}d$). Even with high influent T-P concentration of 5.360 mg/L from SSS (compared with 2.465 mg/L from CSS) T-P removal achieved 93.5% which was 15.5% higher than that of the SBR with influent from CSS. This is probably due to high influent $BOD_5$ concentration from SSS that could provide soluble carbon source to release phosphorus at anaerobic condition. In order to achieve T-P removal greater than 90%, the difference between $BOD_5$ loading and phosphorus loading rate should be over 100 kg /day (0.130 kg $T-N/m^3{\cdot}d$).

Lad-Scale Sequencing Batch Reactor for the optimum treatment of Ship sewage

  • Park, Sang-Ho;Kim, In-Soo
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.315-320
    • /
    • 2006
  • There have been several problems in treating shipboard sewage due to special environmental conditions of ship, such as limited space, rolling and pitching, change of temperature and so on. It was suggested that Sequence Batch Reactor (SBR) might be suitable process for overcome these problems in terms of small size, high capacity of treating wastewater and full automation. In this study a SBR process was employed for biological treatment of organic wastes in the shipboard sewage. This process was able to remove nitrogen and phosphorus as well as organic matter efficiently. More than 95% of chemical oxygen demand(COD) were removed. In addition, about 97% of total nitrogen (T-N) was reduced. The total phosphorus(T-P) reduction averaged 93%. A disturbance operation caused by the treatment of Methylene Blue Active Substances(MBAS) was not observed.

  • PDF

Full-Scale SBR 공법을 이용한 처리특성 (Treatment Characteristics Using Full-Scale SBR System)

  • 추태호;이용두;조용현
    • 한국콘텐츠학회논문지
    • /
    • 제6권10호
    • /
    • pp.34-40
    • /
    • 2006
  • 본 연구에서 연속회분식반응기(SBR)를 이용한 유기물질과 영양염류(N, P)처리가 수행되었다. 이 연구 결과들을 요약하면 다음과 같다. BOD는 $19.6{\sim}40.0mg/L$의 범위로 유입되고, 처리수는 $3.0{\sim}14.8mg/L$로 실험기간의 경과에 따라 점차 안정적으로 처리되었다. 이때의 제거율은 $47.9{\sim}88.4%$로 평균 80.0%로 안정적인 제거율을 보였다. 그리고 COD는 $12.2{\sim}32.0mg/L$의 범위로 유입되었으며, 처리수는 $3.3{\sim}18.6mg/L$로 제거율은 $19.2{\sim}78.6%$로 평균 57.3%의 제거율을 보였다. 하지만 79일 이후의 평균 COD 제거율은 70.2%로 안정적인 제거율은 보였다. T-N의 경우 유입농도는 $7.53{\sim}14.99mg/L$, 처리수는 초기 79일까지는 평균 6.59mg/L로 제거율이 평균 40.3%로 낮았지만 시스템이 정상화된 80일 이후는 평균 4.44mg/L로 처리되어 그 제거율이 56.4%로 나타났다. 또한 T-P의 경우는 유입수의 농도는 $0.77{\sim}1.91mg/L$, 처리수는 $0.26{\sim}1.53mg/L$으로 제거율이 $5.3{\sim}71.7%$로 상당히 큰 변화를 보였으며, 평균제거율은 42.6%로 나타났다. 이는 MLSS 증가를 위해 슬러지 인발을 하지 않았기 때문으로 판단된다.

  • PDF

반류수탈암모니아 공정 (Sidestream Deammonification)

  • 박영현;김정미;최원영;유재철;이태호
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.109-120
    • /
    • 2018
  • Sidestream in domestic wastewater treatment plants contains high concentration of ammonium, which increases nitrogen loading rate in the mainstream. The process for deammonification consisting of partial nitritation-anaerobic ammonium oxidation (ANAMMOX) and heterotrophic denitrification is an economical method of solving this problem. Currently, about 130 full-scale deammonification plants are fully operating around the world, but none is in Korea. In order to transfer the principal information about sidestream deammonification processes to researchers and operators, we summarized basic concepts, processes type, and key influence factors (e.g., concentration of nitrogen compounds, dissolved oxygen (DO), temperature, and pH). This review emphasis on the processes of single-stage sequencing batch reactor (SBR) deammonification, which are widely used as full-scale plants. Since simultaneous processes of partial nitritation, ANAMMOX and heterotrophic denitrification occur in a single reactor, the single-stage SBR deammonification requires appropriate control/monitoring strategies for several operating factors (DO and pH mostly) to achieve efficient and stable operation. In future, AB-process consisting of A-stage (energy harvesting from organics) and B-stage (ammonium removal without organics) will be applied to the wastewater treatment process. Thus, we suggest mainstream deammonification for B-stage connected with the sidestream deammonification as seeding source of ANAMMOX. We expect that many researchers will become more interested in the sidestream deammonification.

PCA를 이용한 하폐수처리시설 운전상태진단 (Operation diagnostic based on PCA for wastewater treatment)

  • 전병희;박장환;전명근
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.383-388
    • /
    • 2006
  • 축산폐수는 축사가 대부분 상수원보다 상류지역에 산재하고 있어 이를 효과적으로 관리하기 어려우나, 연속 회분식 반응기(Sequencing Batch Reactor, SBR)는 장치가 간단하고 경제성이 우수하여 축산폐수처리에서 효율적으로 적용될 수 있다. 본 연구에서는 DO(Dissolved Oxygen)과 ORP(Oxidation-Reduction Potential)을 이용하여 지식기반 고장진단 시스템을 제안하였다. 실시간으로 얻어진 ORP, DO값들을 전처리하여, [ORP], [DO]외에 [ORP DO]합성data와 ORP, DO의 특징벡터의 합에서 얻어진 fusion data의 총 4개의 data set을 이용하여 각각에 대한 진단과 분류성능을 검토하였다. 이 값을 이용하여 FCM (fuzzy C-mean) 클러스터링 한 후, K-PCA과 LDA로 차원축소시켜 특징벡터를 추출하였다. 그리고 Hamming distance로 test data와 특징벡터의 거리를 계산하여 각 class를 F1에서 F8까지 분류하였다. 그 결과 데이터를 그대로 이용하는 것 보다 차분데이터형태로 이용하는 것이 우수했으며 그 중 fusion 데이터의 결과가 다른 것들보다 향상된 결과를 보였다. 그리고 K-PCA와 LDA를 결합한 결과가 다른 방법에 비해 우수한 결과를 보였으며 fusion method를 이용한 최고인식율은 98.02%를 나타내었다.

Speculation on the Identity of Bacteria Named TFOs Occurring in the Inefficient P-Removal Phase of a Biological Phosphorus Removal System

  • Lee, Young-Ok;Ahn, Chang-Hoon;Park, Jae-Kwang
    • Environmental Engineering Research
    • /
    • 제15권1호
    • /
    • pp.3-7
    • /
    • 2010
  • To better understand the ecology of tetrade forming organisms (TFOs) floating in a large amount of dairy wastewater treatment plant (WWTP) effluent (sequencing batch reactor [SBR]) during the inefficient phosphorus (P) removal process of an enhanced biological P removal system, the TFOs from the effluent of a full scale WWTP were separated and attempts made to culture the TFOs in presence/absence of oxygen. The intact TFOs only grew aerobically in the form of unicellular short-rods. Furthermore, to identify the intact TFOs and unicellular short-rods the DNAs of both were extracted, analyzed using their denaturing gradient gel electrophoresis (DGGE)-profiles and then sequenced. The TFOs and unicellular short-rods exhibited the same banding pattern in their DGGE-profiles, and those sequencing data resulted in their identification as Acinetobacter sp. The intact TFOs appeared in clumps and packages of tetrade cells, and were identified as Acinetobacter sp., which are known as strict aerobes and efficient P-removers. The thick layer of extracellular polymeric substance surrounding Acinetobacter sp. may inhibit phosphate uptake, and the cell morphology of TFOs might subsequently be connected with their survival strategy under the anaerobic regime of the SBR system.

실규모 연속유입간헐폭기 공정(ICEAS)에서 최적운전조건이 경제성에 미치는 영향 (Economic implications of optimal operating conditions in a full-scale continuous intermittent cycle extended aeration system (ICEAS))

  • 정용재;최윤성;이승환
    • 상하수도학회지
    • /
    • 제38권1호
    • /
    • pp.29-38
    • /
    • 2024
  • Wastewater management is increasingly emphasizing economic and environmental sustainability. Traditional methods in sewage treatment plants have significant implications for the environment and the economy due to power and chemical consumption, and sludge generation. To address these challenges, a study was conducted to develop the Intermittent Cycle Extended Aeration System (ICEAS). This approach was implemented as the primary technique in a full-scale wastewater treatment facility, utilizing key operational factors within the standard Sequencing Batch Reactor (SBR) process. The optimal operational approach, identified in this study, was put into practice at the research facility from January 2020 to December 2022. By implementing management strategies within the biological reactor, it was shown that maintaining and reducing chemical quantities, sludge generation, power consumption, and related costs could yield economic benefits. Moreover, adapting operations to influent characteristics and seasonal conditions allowed for efficient blower operation, reducing unnecessary electricity consumption and ensuring proper dissolved oxygen levels. Despite annual increases in influent flow rate and concentration, this study demonstrated the ability to maintain and reduce sludge production, electricity consumption, and chemical usage. Additionally, systematic responses to emergencies and abnormal situations significantly contributed to economic, technical, and environmental benefits.