• 제목/요약/키워드: Full-core Reactor Analysis

검색결과 36건 처리시간 0.019초

Modification of RFSP to Accommodate a True Two-Group Treatment

  • Bae, Chang-Joon;Kim, Bong-Ghi;Suk, Soo-Dong;D. Jenkins;B. Rouben
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.185-190
    • /
    • 1996
  • RFSP is a computer program to do fuel management calculations for CANDU reactors. Its main function is to calculate neutron flux and power distributions using two-energy-group, three dimensional neutron diffusion theory. However, up to now the treatment has not been true two-group but actually "one-and-half groups". In other words, the previous (1.5-group) version of RFSP lumps the fast fission term into the thermal fission term. This is based on the POWDERPUFS-V Westcott convention. Also, there is no up-scattering term or bundle power over cell flux (H1 factor) for the fast group. While POWDERPUFS-V provides only 1.5 group properties, true two-group cross sections for the design and analysis of CAUDU reactors can be obtained from WIMS-AECL. To treat the full two-group properties, the previous RFSP version was modified by adding the fast fission, up-scatter terms, and H1 factor. This two-group version of RFSP is a convenient tool to accept lattice properties from any advanced lattice code (e.g. WIMS-AECL DRAGON, HELIOS...) and to apply to advanced fuel cycles. In this study, the modification to implement the true two-group treatment was performed only in the subroutines of the *SIMULATE module of RFSP. This module is the appropriate one to modify first, since it is used for the tracking of reactor operating histories. The modified two-group RFSP was evaluated with true two-group cross sections from WIMS-AECL. Some tests were performed to verify the modified two-group RFSP and to evaluate the effects of fast fission and up-scatter for three core conditions and four cases corresponding to each condition. The comparisons show that the two-group results are quite reasonable and serve as a verification of the modifications made to RFSP. To assess the long-term impact of the full 2-group treatment, it is necessary to simulate a long period (several months) of reactor history. It will also be necessary to implement the full two-group treatment of reactivity devices and assess the reactivity-device worths.ce worths.

  • PDF

Monte Carlo 모사기법을 이용한 해체 콘크리트의 방사능 분석법 연구 (A Study on the Radioactivity Analysis of Decommissioning Concrete Using Monte Carlo Simulation)

  • 서범경;김계홍;정운수;이근우;오원진;박진호
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.43-51
    • /
    • 2004
  • 현재 해체가 진행 중인 연구로 1. 2호기의 원자로 차폐 콘크리트를 해체하기 위해서는 운전기간동안 중성자 조사에 의한 방사화 정도 및 범위를 정확하게 결정하여야 한다. 차폐 콘크리트의 방사화 정도 및 범위를 결정하기 위해서 코어 시료를 채취하여 분석하여야 하는데, 시료 전처리의 어려움과 표준선원의 준비 및 자체흡수효과에 의하여 정확한 측정효율을 결정하는데 어려움이 있다. 본 연구에서는 방사능 분석에 이용되는 HPGe 검출기의 전에너지 검출 효율을 표준선원을 이용한 측정값과 Monte Carlo 방법을 이용하여 계산 값을 비교하였다. 또한, Monte Carlo 모사 기법을 이용하여 콘크리트의 밀도 및 성훈 변화에 따른 자체흡수 효과를 계산하였으며, 향후 실제 콘크리트 코어 시료를 채취 시 방사능 분석에 이용할 계획이다.

  • PDF

3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Conditions

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Nuclear Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.559-570
    • /
    • 2004
  • A computational fluid dynamics model for predicting moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the calandria tubes. The buoyancy effect induced by the internal heating is accounted for by the Boussinesq approximation. The standard $k-{\varepsilon}$ turbulence model with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the calandria tubes in the core region is simplified to a porous media in which the anisotropic hydraulic impedance is modeled using an empirical correlation of pressure loss. The governing equations are solved by DFX-4.4, a commercial CFD code developed by AEA technology. The resultant flow patterns of the constant-z slices containing the inlet nozzles and the outlet port are "mined-type", as observed in the former 2-dimensional experimental investigations. With 103% full power for conservatism, the maximum temperature of the moderator is $82.9^{\circ}C$ at the top of the core region. Considering the hydrostatic pressure change, the minimum subcooling is $24.8^{\circ}C$.

Improved nodal equivalence with leakage-corrected cross sections and discontinuity factors for PWR depletion analysis

  • Lee, Kyunghoon;Kim, Woosong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1195-1208
    • /
    • 2019
  • This paper introduces a new two-step procedure for PWR depletion analyses. This procedure adopts the albedo-corrected parameterized equivalence constants (APEC) method to correct the lattice-based raw cross sections (XSs) and discontinuity factors (DFs) by accounting for neutron leakage. The intrinsic limitations of the conventional two-step methods are discussed by analyzing a 2-dimensional SMR with the commercial DeCART2D/MASTER code system. For a full-scope development of the APEC correction, the MASTER nodal code was modified so that the group constants can be corrected in the middle of a microscopic core depletion. The basic APEC methodology is described and color-set problems are defined to determine the APEC functions for burnup-dependent XS and DF corrections. Then the new two-step method was applied to depletion analyses of the SMR without thermal feedback, and its validity was evaluated in terms of being able to predict accurately the reactor eigenvalue and nodal power profile. In addition, four variants of the original SMR core were also analyzed for a further evaluation of the APEC-assisted depletion. In this work, several combinations of the burnup-dependent and -independent XS and DF corrections were also considered. The results show that the APEC method could enhance the nodal equivalence significantly with inexpensive additional costs.

FLOODING PSA BY CONSIDERING THE OPERATING EXPERIENCE DATA OF KOREAN PWRs

  • Choi, Sun-Yeong;Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.215-220
    • /
    • 2007
  • The existing flooding Probabilistic Safety Analysis(PSA) was updated to reflect the Korean plant specific operating experience data into the flooding frequency to improve the PSA quality. Both the Nuclear Power Experience(NPE) database and the Korea Nuclear Pipe Failure Database(NuPIPE) databases were used in this study, and from these databases, only the Pressurized Water Reactor(PWR) data were used for the flooding frequencies of the flooding areas in the primary auxiliary building. With these databases and a Bayesian method, the flooding frequencies for the flooding areas were estimated. Subsequently, the Core Damage Frequency(CDF) for the flooding PSA of the Ulchin(UCN) unit 3 and 4 plants based on the Korean Standard Nuclear Power Plant(KSNP) internal full-power PSA model was recalculated. The evaluation results showed that sixteen flooding events are potentially significant according to the screening criterion, while there were two flooding events exceeding the screening criterion of the existing UCN 3 and 4 flooding PSA. The result was compared with two kinds of cases: (1) the flooding frequency and CDF from the method of the existing flooding PSA with the PWR and Boiled Water Reactor(BWR) data of the NPE database and the Maximum Likelihood Estimate(MLE) method and (2) the flooding frequency and CDF with the NPE database(PWR and BWR data), NuPIPE database, and a Bayesian method. From the comparison, a difference in CDF results was revealed more clearly between the CDF from this study and case (2) than between case (1) and case (2). That is, the number of flooding events exceeding the screen criterion further increased when only the PWR data were used for the primary auxiliary building than when the Korean specific data were used.

고리 1호기 소형파단 냉각제 상실사고에 의해 개시된 가상 노심용융 사고 해석 (Severe Accident Sequence Analysis - Part 1: Analysis of Postulated Core Meltdown Accident Initiated by Small Break LOCA in Kori-1 PWR Dry Containment)

  • Jong In Lee;Seung Hyuk Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • 제16권3호
    • /
    • pp.141-154
    • /
    • 1984
  • 고리 1호기의 소형파단냉각재 상실사고에 의해 개시된 중대사고 유형과 그 현상에 대할 분석이 제시되었다. 본 해석에서는 KAERI에서 기존 전산코드의 수정.보완된 MARCH 전산코드가 사용되었다. 특히 고리 1호기의 소형파단 LOCA 해석시 수소 거동과 중기과압에 대한 평가 및 그 응답성에 중점을 두고 검토되었으며, 2-loop 발전소 데이타 분석 및 debris-Water 상호작용 모델에 대한 비교 분석이 수행되었다. 제 1부 중대 사고유형 분석결과, 저농도에서 H$_2$ burning이 이루어지는 경우 계속적인 수소 생성으로 인해 반복 수소 spike가 야기 되나, 격납용기 설계압력치 보다낮게 예측되었다. 또한 debris/water 상호작용시 core debris의 입자크기는 첨두압력의 크기에 미치는 영향은 미세하나 첨두압력의 발생시점은 dryout모델사용에 의해서 상당히 지연시키게 되었다. 완전한 노심용융 사고시 수소연소와 증기과압으로부터 예측된 격납용기 최대압력은 격납용기 건전성에 심각한 위협을 초래하지 않는 것으로 나타났다.

  • PDF