• Title/Summary/Keyword: Full-bridge DC/DC converter

Search Result 311, Processing Time 0.034 seconds

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

A New Mode Changable Asymmetric Full Bridge DC/DC Converter having 0 ~ 100 % Duty Ratio (0 ~ 100 % 시비율을 갖는 새로운 모드 가변형 비대칭 풀 브리지 DC/DC 컨버터)

  • Shin, Yong-Saeng;Roh, Chung-Wook;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • In this paper, a new mode changeable asymmetric full bridge dc/dc converter is proposed to solve the freewheeling current problem of the conventional zero voltage switching(ZVS) phase shift full bridge(PSFB) dc/dc converter of low output voltage and high output current applications. The proposed converter is operated as an asymmetric full bridge converter when the duty cycle is less than 50% and active clamp full bridge converter when the duty cycle is greater than 50%. As a result, since its freewheeling current is eliminated, the conduction loss is lower than that of the conventional ZVS PSFB dc/dc converter. Moreover, ZVS of all power switches can be ensured along a wide load ranges and output current ripple is very small. Therefore, high efficiency of the proposed converter can be achieved. Especially since its operation mode is changed to the active clamp full bridge converter during hold up time and can be operated with 50~100% duty ratio, it can produce the stable output voltage along wide input voltage range. The operational principles, theoretical analysis and design considerations are presented. To confirm the operation, validity and features of the proposed converter, experimental results from a 1.2kW($400V_{dc}/12V_{dc}$) prototype are presented.

Feasibility Study of Tapped Inductor Filter Assisted Soft-Switching PWM DC-DC Power Converter

  • Moisseev S.;Sato S;Hamada S;Wakaoka M
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.231-234
    • /
    • 2003
  • This paper presents a novel high frequency transformer linked full-bridge type soft-switching phase-shift PWM control scheme DC-DC power converter, which can be used as power conditioner fur small-scale fuel cell power generation system. Using full-bridge soft-switching DC-DC converter topology makes possible to use low voltage high performance MOSFETs to achieve high efficiency of the power conditioner. A tapped inductor filter is implemented in the proposed soft-switching converter topology to achieve soft-switching PWM constant high frequency operation for a wide load variation range. to minimize circulating and idling currents without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching DC-DC converter is verified in laboratory level experiment with 1 kW 100kHz breadboard setup using power MOSFETs. Actual efficiency of 94-96$\%$ is obtained for the wide load range

  • PDF

DC Bias Control of High Frequency Transformer in High Power FB DC/DC Converter (대용량 FB DC/DC 컨버터에 있어서 고주파변압기 편 여자 현상 및 제어)

  • 김태진
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.45-48
    • /
    • 2000
  • By the use of he DSP and microprocessor controller many high power converter such as especially inverter and motor drive system may be enhanced resulting in the improved robustness of EMI the ability to communicate the operating conditions and the ease of adjusting the control parameters. However the digital controller using DSP or microprocessor has not been applied in the high frequency switching power supplies especially in full bridge dc/dc converters. this paper presents a promising solution to the dc bias control problem of high frequency transformer in high power full bridge converter.

  • PDF

An Improved ZVZCS PWM FB DC/DC Converter Using the Modified Clamp Circuit (개선된 Clamp Circuit 적용 ZVZCS FB DC/DC 컨버터)

  • 김은수;조기연;김윤호;이진수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.643-645
    • /
    • 1999
  • The conventional high frequency phase-shifted full bridge dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this paper provides a circulating current free type high frequency soft switching phase-shifted full bridge (FB) dc/dc converter with the modified energy recovery snubber (ERS) attached at the secondary side of transforemr.

  • PDF

A Fully Soft Switched Full Bridge DC-DC converter (보조회로도 영전압영전류스위칭하는 DC-DC 변환기)

  • Jeon, Seong-Jeub;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2512-2514
    • /
    • 1999
  • A new zero voltage and zero current switching(ZVZCS) full bridge DC-DC converter with transformer isolation is proposed for arc welding machines. The proposed DC-DC converter uses an auxiliary transformer to obtain ZCS for leading leg, which provides load current control capability even in short circuit condition. The auxiliary circuit also operates in ZVZCS mode. The power rating of the auxiliary transformer is about 10% of the main transformer. The operation is verified by experiments for 12[KW] prototype.

  • PDF

Power Loss Analysis of EV Fast Charger with Wide Charging Voltage Range for High Efficiency Operation (넓은 충전 범위를 갖는 전기 자동차용 급속 충전기의 고효율 운전을 위한 손실 분석)

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1055-1063
    • /
    • 2014
  • Power losses of a 1-stage DC-DC converter and 2-stage DC-DC converter are compared in this paper. A phase-shift full-bridge DC-DC converter is considered as 1-stage topology. This topology has disadvantages in the stress of rectifier diodes because of the resonance between the leakage inductor of the transformer and the junction capacitor of the rectifier diode. 2-stage topology is composed of an LLC resonant full-bridge DC-DC converter and buck converter. The LLC resonant full-bridge DC-DC converter does not need an RC snubber circuit of the rectifier diode. However, there is the drawback that the switching loss of the buck converter is large due to the hard switching operation. To reduce the switching loss of the buck converter, SiC MOSFET is used. This paper analyzes and compares power losses of two topologies considering temperature condition. The validity of the power loss analysis and calculation is verified by a PSIM simulation model.

Implementation and Problem Analysis of Phase Shifted dc-dc Full Bridge Converter with GaN HEMT (Cascode GaN HEMT를 적용한 위상 천이 dc-dc 컨버터의 구현 및 문제점 분석)

  • Joo, Dong-Myoung;Kim, Dong-Sik;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.558-565
    • /
    • 2015
  • Gallium nitride high-electron mobility transistor (GaN HEMT) is the strongest candidate for replacing Si MOSFET. Comparing the figure of merit (FOM) of GaN with the state-of-the-art super junction Si MOSFET, the FOM is much better because of the wide band gap characteristics and the heterojunction structure. Although GaN HEMT has many benefits for the power conversion system, the performance of the power conversion system with the GaN HEMT is sensitive because of its low threshold voltage ($V_{th}$) and even lower parasitic capacitance. This study examines the characteristics of a phase-shifted full-bridge dc-dc converter with cascode GaN HEMT. The problem of unoptimized dead time is analyzed on the basis of the output capacitance of GaN HEMT. In addition, the printed circuit board (PCB) layout consideration is analyzed to reduce the negative effects of parasitic inductance. A comparison of the experimental results is provided to validate the dead time and PCB layout analysis for a phase-shifted full-bridge dc-dc converter with cascode GaN HEMT.

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

PWM-Based Sliding Mode Controller for Three-Level Full-Bridge DC-DC Converter that Eliminates Static Output Voltage Error

  • Liu, Jilong;Xiao, Fei;Ma, Weiming;Fan, Xuexin;Chen, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.378-388
    • /
    • 2015
  • This paper proposes a pulse width modulation (PWM)-based sliding mode controller (SMC) for a full-bridge DC-DC converter that can eliminate static output voltage error. Hysteretic SMC in DC-DC converter does not have a fixed switching frequency, and applying hysteretic SMC to full-bridge converters is difficult. Fixed-frequency SMC, which is also called PWM-based SMC, based on equivalent control overcomes these shortcomings. However, the controller order reduction in equivalent control in PWM-based SMC causes static output voltage error. To resolve this issue, an integral item is added to the PWM-based SMC. Sliding mode coefficients are designed by applying a standard second-order system to the sliding mode surface. The effect of adding an integral item on the controller is analyzed, and an integral coefficient design method is proposed. Experiment results on a three-level full-bridge DC-DC converter verify the control scheme and design method proposed in this paper.