• 제목/요약/키워드: Full-Core Depletion

검색결과 6건 처리시간 0.016초

Domain Decomposition Strategy for Pin-wise Full-Core Monte Carlo Depletion Calculation with the Reactor Monte Carlo Code

  • Liang, Jingang;Wang, Kan;Qiu, Yishu;Chai, Xiaoming;Qiang, Shenglong
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.635-641
    • /
    • 2016
  • Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

Domain decomposition for GPU-Based continuous energy Monte Carlo power reactor calculation

  • Choi, Namjae;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2667-2677
    • /
    • 2020
  • A domain decomposition (DD) scheme for GPU-based Monte Carlo (MC) calculation which is essential for whole-core depletion is introduced within the framework of the modified history-based tracking algorithm. Since GPU-offloaded MC calculations suffer from limited memory capacity, employing DDMC is inevitable for the simulation of depleted cores which require large storage to save hundreds of newly generated isotopes. First, an automated domain decomposition algorithm named wheel clustering is devised such that each subdomain contains nearly the same number of fuel assemblies. Second, an innerouter iteration algorithm allowing overlapped computation and communication is introduced which enables boundary neutron transactions during the tracking of interior neutrons. Third, a bank update scheme which is to include the boundary sources in a way to be adequate to the peculiar data structures of the GPU-based neutron tracking algorithm is presented. The verification and demonstration of the DDMC method are done for 3D full-core problems: APR1400 fresh core and a mock-up depleted core. It is confirmed that the DDMC method performs comparably with the standard MC method, and that the domain decomposition scheme is essential to carry out full 3D MC depletion calculations with limited GPU memory capacities.

Cross section generation for a conceptual horizontal, compact high temperature gas reactor

  • Junsu Kang;Volkan Seker;Andrew Ward;Daniel Jabaay;Brendan Kochunas;Thomas Downar
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.933-940
    • /
    • 2024
  • A macroscopic cross section generation model was developed for the conceptual horizontal, compact high temperature gas reactor (HC-HTGR). Because there are many sources of spectral effects in the design and analysis of the core, conventional LWR methods have limitations for accurate simulation of the HC-HTGR using a neutron diffusion core neutronics simulator. Several super-cell model configurations were investigated to consider the spectral effect of neighboring cells. A new history variable was introduced for the existing library format to more accurately account for the history effect from neighboring nodes and reactivity control drums. The macroscopic cross section library was validated through comparison with cross sections generated using full core Monte Carlo models and single cell cross section for both 3D core steady-state problems and 2D and 3D depletion problems. Core calculations were then performed with the AGREE HTR neutronics and thermal-fluid core simulator using super-cell cross sections. With the new history variable, the super-cell cross sections were in good agreement with the full core cross sections even for problems with significant spectrum change during fuel shuffling and depletion.

Practical methods for GPU-based whole-core Monte Carlo depletion calculation

  • Kyung Min Kim;Namjae Choi;Han Gyu Lee;Han Gyu Joo
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2516-2533
    • /
    • 2023
  • Several practical methods for accelerating the depletion calculation in a GPU-based Monte Carlo (MC) code PRAGMA are presented including the multilevel spectral collapse method and the vectorized Chebyshev rational approximation method (CRAM). Since the generation of microscopic reaction rates for each nuclide needed for the construction of the depletion matrix of the Bateman equation requires either enormous memory access or tremendous physical memory, both of which are quite burdensome on GPUs, a new method called multilevel spectral collapse is proposed which combines two types of spectra to generate microscopic reaction rates: an ultrafine spectrum for an entire fuel pin and coarser spectra for each depletion region. Errors in reaction rates introduced by this method are mitigated by a hybrid usage of direct online reaction rate tallies for several important fissile nuclides. The linear system to appear in the solution process adopting the CRAM is solved by the Gauss-Seidel method which can be easily vectorized on GPUs. With the accelerated depletion methods, only about 10% of MC calculation time is consumed for depletion, so an accurate full core cycle depletion calculation for a commercial power reactor (BEAVRS) can be done in 16 h with 24 consumer-grade GPUs.

Improved nodal equivalence with leakage-corrected cross sections and discontinuity factors for PWR depletion analysis

  • Lee, Kyunghoon;Kim, Woosong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1195-1208
    • /
    • 2019
  • This paper introduces a new two-step procedure for PWR depletion analyses. This procedure adopts the albedo-corrected parameterized equivalence constants (APEC) method to correct the lattice-based raw cross sections (XSs) and discontinuity factors (DFs) by accounting for neutron leakage. The intrinsic limitations of the conventional two-step methods are discussed by analyzing a 2-dimensional SMR with the commercial DeCART2D/MASTER code system. For a full-scope development of the APEC correction, the MASTER nodal code was modified so that the group constants can be corrected in the middle of a microscopic core depletion. The basic APEC methodology is described and color-set problems are defined to determine the APEC functions for burnup-dependent XS and DF corrections. Then the new two-step method was applied to depletion analyses of the SMR without thermal feedback, and its validity was evaluated in terms of being able to predict accurately the reactor eigenvalue and nodal power profile. In addition, four variants of the original SMR core were also analyzed for a further evaluation of the APEC-assisted depletion. In this work, several combinations of the burnup-dependent and -independent XS and DF corrections were also considered. The results show that the APEC method could enhance the nodal equivalence significantly with inexpensive additional costs.

Simulations of BEAVRS benchmark cycle 2 depletion with MCS/CTF coupling system

  • Yu, Jiankai;Lee, Hyunsuk;Kim, Hanjoo;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.661-673
    • /
    • 2020
  • The quarter-core simulation of BEAVRS Cycle 2 depletion benchmark has been conducted using the MCS/CTF coupling system. MCS/CTF is a cycle-wise Picard iteration based inner-coupling code system, which couples sub-channel T/H (thermal/hydraulic) code CTF as a T/H solver in Monte Carlo neutron transport code MCS. This coupling code system has been previously applied in the BEAVRS benchmark Cycle 1 full-core simulation. The Cycle 2 depletion has been performed with T/H feedback based on the spent fuel materials composition pre-generated by the Cycle 1 depletion simulation using refueling capability of MCS code. Meanwhile, the MCS internal one-dimension T/H solver (MCS/TH1D) has been also applied in the simulation as the reference. In this paper, an analysis of the detailed criticality boron concentration and the axially integrated assembly-wise detector signals will be presented and compared with measured data based on the real operating physical conditions. Moreover, the MCS/CTF simulated results for neutronics and T/H parameters will be also compared to MCS/TH1D to figure out their difference, which proves the practical application of MCS into the BEAVRS benchmark two-cycle depletion simulations.