• Title/Summary/Keyword: Full scale load test

Search Result 269, Processing Time 0.033 seconds

Thrust - Performance Test of Ethylene-Oxygen Single-Tube Pulse Detonation Rocket

  • Hirano, Masao;Kasahara, Jiro;Matsuo, Akiko;Endo, Takuma;Murakami, Masahide
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.205-210
    • /
    • 2004
  • The pulse detonation engine (PDE) has recently expected as a new aerospace propulsion system. The PDE system has high thermal efficiency because of its constant-volume combustion and its simple tube structure. We measured thrust of single-tube pulse detonation rocket (PDR) by two methods using the PDR-Engineering Model (full scale model) for ground testing. The first involved measuring the displacement of the PDR-EM by laser displacement meter, and the second involved measuring the time-averaged thrust by combining a load cell and a spring-damper system. From these two measurements, we obtained 130.1 N of time-averaged thrust, which corresponds to 321.2 sec of effective specific impulse (ISP). As well, we measured the heat flux in the wall of PDE tubes. The heat flux was approximately 400 ㎾/$m^2$. We constructed the PDR-Flight Mode] (PDR-FM). In the vertical flight test in a laboratory, the PDR-FM was flying and keeping its altitude almost constant during 0.3 sec.

  • PDF

Dynamic Characteristics of Spliced Precast Concrete Box Girder (분절 프리캐스트 콘크리트 중공 거더의 동특성 시험)

  • Chung, Won-Seok;Kim, Jae-Heung;Kim, Hyun-Min;Lee, Seong-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.538-544
    • /
    • 2006
  • This paper is to investigate the dynamic characteristics of prestressed concrete (PSC) girder that has been spliced with precast box segments. A 20 m long full-scale spliced precast concrete box railway girder was fabricated and tested to identify its dynamic properties against a monolithic girder. The monolithic girder has the same geometric and material properties with respect to the spliced girder. Dynamic parameters including natural frequency, mode shape, and damping ratio were identified using the a digitally controlled exciter. Modal analyses were performed based on three-dimensional finite element models, and the calculated modal parameters were compared with test results. Finally, the characteristic decrease of natural frequency due to damage for each girder has been examined after the load test.

  • PDF

Development of Rain Gauge and Observation Error (우량계 개발과 측정 오차)

  • 김대원;이부용
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1055-1060
    • /
    • 2002
  • A new method of automatic recording raingauge is developed to measure rainfall 1200mm full scale with high accuracy and resolution. The principle of new instrument is to detect a weight change of a buoyant weight according to a change in water level of raingauge measured by the use of a strain gauge load cell. This method has the advantage of increasing measurement accuracy, since no moving equipment is used. Laboratory test of the instrument was recorded 0.4% error of 190mm rainfall amount. The validity of new instrument was examined by comparing its measured values with values recorded by automatic weather station on June 24 to 25 2001 at Daegu Meteorological Station, when there is 148.3mm rainfall amount. In spite of much rainfall there is only 0.77mm difference of total rainfall amount. This instrument was accomplished high accuracy and resolution at field test in much rainy day.

Shear bond failure in composite slabs - a detailed experimental study

  • Chen, Shiming;Shi, Xiaoyu;Qiu, Zihao
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.233-250
    • /
    • 2011
  • An experimental study has been carried out to reveal the shear-bond failure mechanism of composite deck slabs. Thirteen full scale simply supported composite slabs are studied experimentally, with the influence parameters like span length, slab depth, shear span length and end anchorage provided by steel headed studs. A dozen of strain gauges and LVDTs are monitored to capture the strain distribution and variation of the composite slabs. Before the onset of shear-bond slip, the longitudinal shear forces along the span are deduced and found to be proportional to the vertical shear force in terms of the shear-bond strength in the m-k method. The test results are appraised using the current design procedures. Based on the partial shear-bond connection at the ultimate state, an improved method is proposed by introducing two reduction factors to assess the moment resistance of a composite deck slab. The new method has been validated and the results predicted by the revised method agree well with the test results.

Evaluation on the Shear Performance of U-type Precast Prestressed Beams (U형 PSC보외 전단거동 평가)

  • Yu Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.10-17
    • /
    • 2004
  • Shear tests were performed on four ends of full scale U-type beams which were designed by optimum process for the depth with a live load of 4903Pa. The ratio of width to depth of full scale 10.5 m-span, composite U-type beams with topping concrete was greater than 2. Following conclusions were obtained from the evaluation on the shear performance of these precast prestressed beams. 1) Those composite U-type beams performed homogeneously up to the failure load, and conformed to ACI Strength design methods in shear and flexural behaviors. 2) The anchorage requirements on development length of strand In the ACI Provisions preyed to be a standard to determine a failure pattern within the limited test results of the shallow U-type beams. 3) Those all shear crackings developed from the end of the beams did not lead to anchorage failure. However, initiated strand slip may leads the bond failure by increasing the size of diagonal shear crackings. 4) The flexural mild reinforcement around the vertical center of beam section was effective for developments of a ductile failure.

Case History Evaluation of Axial Behavior of Micropiles (소구경말뚝의 축방향 거동에 대한 사례 연구)

  • Jeon Sang-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2004
  • This paper examines the results of full-scale field tests on micropiles and side resistance is evaluated with respect to axial displacements and soil properties. Both cohesive and cohesionless soils are included in this evaluation. For all practical purposes, the developed load-displacement relationship and the geotechnical soil properties for each micropile and soil type can be used to represent the available data well through normalized average values and empirical correlations. There is a significant difference in load-carrying capacity between micropiles and drilled shafts that results primarily from the micropile pressure-grouting installation effects on the state of stress in the ground. The results show that micropiles can have a significant increase of capacity over larger-diameter drilled shafts at shallower depths with D/B < 100 or so. In cohesive soils, the typical increase is on the order of 1.5 with values as high as 2.5. For cohesionless soils, the typical increases are in the range of 1.5 to 2.5 with values as high as 6.

Dynamic characteristics of combined isolation systems using rubber and wire isolators

  • Lee, Seung-Jae;Truong, Gia Toai;Lee, Ji-Eon;Park, Sang-Hyun;Choi, Kyoung-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1071-1084
    • /
    • 2022
  • The present study aims to investigate the dynamic properties of a novel isolation system composed of separate rubber and wire isolators. The testing program comprised pure compressive, pure-shear, compressive-stress dependence, and shear-strain dependence tests that used full-scale test specimens according to ISO 22762-1. A total of 22 test specimens were fabricated and investigated. Among the tests, the pure compressive test was a destructive test that reached up to the failure stage, whereas the others were nondestructive tests before the failure stage. Similar to the pure-shear test, at each compressive-stress level in the compressive dependence test or at each shear-strain level in the shear-strain dependence test, the cyclic loading was conducted for three cycles. In the nondestructive tests, examination of the dynamic shear properties in the X-direction was independent of the Y-direction. The test results revealed that the increase in the shear strain increased the energy dissipation but decreased the damping ratio, whereas the increase in the compressive stress increased the damping ratio. In addition, a macro model was developed to simulate the load-displacement response of the isolation systems, and the prediction results were consistent with the experimental results.

A Experimental Study on the Structural Performance of Precast Bracket under Precast Road Deck Slab of Double Deck Tunnel (복층터널에서 도로용 중간슬래브와 연결되는 조립식 브라켓의 구조성능에 관한 실험연구)

  • Kim, Bo Yeon;Lee, Doo Sung;Kim, Tae Kyun;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.647-657
    • /
    • 2017
  • The main purpose of this study is to investigate the static & dynamic behavior of a precast bracket under precast road deck slab of double deck tunnel. In order to improve the construction speed, the field prefabricated bracket to connect the intermediate slab to the precast shield tunnel lining structure has been developed in the 'SPC (Steel Precast Concrete) bracket'. The experiments were performed for the full scale model in order to evaluate the performance of the 'SPC bracket', the structural stability was verified through the FEM analysis. The result of static loading test, no deformations or cracks of the bracket undergo the ultimate load was investigated. In addition, no pulling or deformation of the chemical anchor for fixing the bracket was measured. As a result of dynamic loading test, it was investigated that there is no problem in the chemical anchor for fixing the bracket. FEM analysis showed similar behavior to static load test and it was determined that there is no problem in serviceability and structural safety.

An Experimental Study on Compressive Loading Capacity of Precast Concrete Truss System (프리캐스트 콘크리트 트러스 시스템의 압축 내하력 실험 연구)

  • Han, Man-Yop;Jeon, Se-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.889-900
    • /
    • 2013
  • In a large scale of excavation for the foundation of large-sized structures and underground structures, a considerable amount of earth pressure can occur. Steel beams that have been used to form a temporary structure to support earth pressure may be less economical and less efficient in resisting the high earth pressure. To cope with this problem, PCT(Precast Concrete Truss) system has been devised and investigated both experimentally and analytically. A proper connection method between the concrete truss members was proposed to accommodate fast assembly and disassembly. Full-scale test of PCT system was performed to verify the load-carrying capacity of the PCT system including the connections. The test results were compared with those of structural analysis. The test specimen which corresponds to PCT strut attained the ultimate load without buckling, but the detail of connector members needs to be improved. It is expected that precast concrete truss members can be efficiently incorporated into a temporary structure for deep and large excavation by replacing conventional steel beams.

An Experimental Study on Fatigue Durability for Composite Torque Link of Helicopter Landing Gear (헬리콥터 착륙장치 복합재 토크링크 피로내구성에 대한 실험적 연구)

  • Kwon, Jung-Ho;Kang, Dae-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.26-31
    • /
    • 2010
  • This research work contributes to a study for the procedure and methodology to assess the fatigue durability for a composite torque link for helicopter landing gear, which was newly developed and fabricated by the resin transfer moulding technique to interchange with metal component. The simulated load spectrum anticipated to be applied to the torque link during its operation life was generated using an advanced method of probabilistic random process, and the fatigue durability was evaluated by the residual strength degradation approach on the basis of material test data. The full scale fatigue test was performed and compared with the analysis results.