• Title/Summary/Keyword: Full scale experiment

Search Result 237, Processing Time 0.03 seconds

An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort

  • Ni, Y.Q.;Ye, S.Q.;Song, S.D.
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.53-74
    • /
    • 2016
  • This paper presents an experimental study on constructing a tunable secondary suspension for high-speed trains using magneto-rheological fluid dampers (referred to as MR dampers hereafter), in the interest of improving lateral ride comfort. Two types of MR dampers (type-A and type-B) with different control ranges are designed and fabricated. The developed dampers are incorporated into a secondary suspension of a full-scale high-speed train carriage for rolling-vibration tests. The integrated rail vehicle runs at a series of speeds from 40 to 380 km/h and with different current inputs to the MR dampers. The dynamic performance of the two suspension systems and the ride comfort rating of the rail vehicle are evaluated using the accelerations measured during the tests. In this way, the effectiveness of the developed MR dampers for attenuating vibration is assessed. The type-A MR dampers function like a stiffness component, rather than an energy dissipative device, during the tests with different running speeds. While, the type-B MR dampers exhibit significant damping and high current input to the dampers may adversely affect the ride comfort. As part of an ongoing investigation on devising an effective MR secondary suspension for lateral vibration suppression, this preliminary study provides an insight into dynamic behavior of high-speed train secondary suspensions and unique full-scale experimental data for optimal design of MR dampers suitable for high-speed rail applications.

An Experimental Study for the Mechanical Properties of Model Ice Grown in a Cold Room (Cold Room을 이용한 모형빙의 재료특성에 관한 실험적 연구)

  • Kim, Jung-Hyun;Choi, Kyung-Sik;Jeong, Seong-Yeob;Seo, Young-Kyo;Cho, Seong-Rak;Lee, Chun-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.64-70
    • /
    • 2008
  • A full-scale field experiment is an important part in the design of ships and offshore structures. Full-scale tests in the ice-covered sea, however, are usually very expensive and difficult tasks. Model tests in a refrigerated ice tank may substitute this difficulty of full-scale field tests. One of the major tasks to perform proper model tests in an ice towing tank is to select a realistic material for model ice which shows correct similitude with natural sea ice. This study focuses on the testing material properties and the selection of model ice material which will be used in an ice model basin. The first Korean ice model basin will be constructed at the Maritime & Ocean Engineering Research Institute (MOERI) in 2009. With an application to the MOERI ice model basin, in this study the material properties of EG/AD/S model ice of IOT (Institute for Ocean Technology) Canada, were tested. Through comprehensive bending tests, the elastic modulus and the flexural strength of EG/AD/S model ice were evaluated and the results were compared with published test results from Canada. Instead of using an ice model basin, a cold room facility was used for making a model ice specimen. Since the cold room adopts a different freezing procedure to make model ice, the strength of the model ice specimen differs from the published test results. The reason for this difference is discussed and the future development for a making model ice is recommended.

Flexural Behavior of High-Strength Concrete Beams with Confinement in Pure Bending Zone (순수휨 구간내 스터럽이 보강된 고강도 콘크리트 보의 휨거동 연구)

  • 장일영;박훈규;황규철;남성현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.959-964
    • /
    • 2002
  • The purpose of this study is to establish flexural behavior of high-strength concrete by means of both theoretical approach and experimental analysis of beams in which confinement stirrups have been introduced into pure bending zone. The experiment was carried out on full-scale high-strength reinforced concrete beams whose compressive strengths are 400 and 700kgf/cm$^2$, and confined with rectangular closed stirrups. The test results are reviewed in terms of flexural capacity and ductility.

  • PDF

Large Eddy Simulation of Turbulent Combustion Flow Based on 2-scaler flamelet approach

  • Oshima, Nobuyuki;Tominaga, Takuji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.18-21
    • /
    • 2006
  • This paper investigates LES of turbulent combustion flow based on 2-scalar flamelet approach, where a G-equation and a conserved scalar equation simulate a propagation of premixed flame and a diffusion combustion process, respectively. The turbulent SGS modeling on these flamelet combustion approach is also researched. These LES models are applied to an industrial flows in a full scale gasturbine combustor with premixed and non-premixed flames. The numerical results predict the characteristics of experiment temperature profiles. Unsteady features of complex flames in combustor are also visualized.

  • PDF

The Effect of Gesture during the e-Learning Class on Cross-cultural Learners

  • Shin, Sanggyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.313-316
    • /
    • 2018
  • In this paper, the authors reflect on how a lecturer's cross-cultural gestures affect learners from across cultures online and in the field teaching sessions for improving the service when to build an e-Learning system. The study extends to survey the way learners feel about cultural differences during a presentation from the research based on sociolinguistics research. Before starting a full-scale research, a preliminary study has been conducted to base the initial experiment, and analysis these result for main research.

Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System (주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구)

  • Yoon, Jong-Ho;Han, Kyu-Bok;An, Young-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

Numerical Study on the Validity of Scaling Law for Compartment Fires (구획 화재의 상사 법칙 유효성에 관한 수치해석 연구)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.29-34
    • /
    • 2014
  • In this study, to assess the validity of scaling law which was based on the ventilation factor and utilized in fields of compartment fires, numerical simulations were conducted on full- and 2/5 reduced-scale compartment fires using FDS and simulation results were compared with the previously published experimental data. The numerical modeling used in this study was verified by comparing the predicted temperature at several points of the upper layer with the experiment data. Temperature and concentration distribution inside of compartments and velocity profile at door of compartment are analyzed to assess the validity of scaling law. Comparison between the predicted results on the full- and reduced-scale compartments shows good agreements on the inner compartment flow patterns, outflowing flame patterns from the compartments, and vertical temperature distributions.

A Study on the Midwater pair Trawling-III (쌍끌이 중층트롤어업의 연구 ( III ) - 끌줄의 예망장력에 관하여 - ( A Study on the Midwater Pair Trawling ( III ) ))

  • Jang, Choong-Sik;Lee, Byoug-Gee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • Towing tension of the model nets were determined by the load cell(O~20kg, 20DBBP) in front of W$T_mA$ = 1.57 . $V^1.86$ (unit: kg, mlsec) $T_mB$= 1.58 . $V^1.90$ 2. The towing tension of the full scale net was almost coincided with the results obtained by the model experiment. The towing tension(T) can be expressed as a function of the towing veJocity(V) as T=479$V^1.75$(unit: kg, k't)

  • PDF

Evaluation of Failure Behavior of a Pipe Containing Circumferential Notch-Type Wall Thinning (원주방향 노치형 감육부를 가진 배관의 손상거동 평가)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1295-1302
    • /
    • 2003
  • In order to evaluate a failure behavior of pipe with notch-type wall thinning, the present study performed full-scale pipe tests using the 102mm, Schedule 80 pipe specimen simulated notch- and circular-type thinning defects. The pipe tests were conducted under the conditions of both monotonic and cyclic bending moment at a constant internal pressure of 10 MPa. From the results. of experiment the failure mode, load carrying capacity, deformation ability, and fatigue life of a notch-type wall thinned pipe were investigated, and they were compared with those of a circular-type wall thinned pipe. The failure mode of notched pipe was similar to that of circular-type thinned pipe under the monotonic bending load. Under the cyclic bending load, however, the mode was clearly distinguished with variation in the shape of wall thinning. The load carrying capacity of a pipe containing notch-type wall thinning was about the same or slightly lower than that of a pipe containing circular-type wall thinning when the thinning area was subjected to tensile stress, whereas it was higher than that of a pipe containing circular-type thinning defect when the thinning area was subjected to compressive stress. On the other hand, the deformation ability and fatigue life of a notch-type wall thinned pipe was lower than those of a circular-type wall thinned pipe.

The development of a field measurement instrumentation system for low-rise construction

  • Porterfield, Michelle L.;Jones, Nicholas P.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.247-260
    • /
    • 2001
  • In the last three decades several comprehensive field measurement programs have produced significant insight into the wind effects on low-rise structures. The most notable and well published of these efforts are measurements being collected at the Wind Engineering Field Laboratory (WERFL) at Texas Tech University, measurements on low-rise structures in Silsoe, England and measurements on groups of low-rise structures collected in Aylesbury, England. Complementary to these efforts, an additional full-scale field investigation program has recently collected meteorological, pressure, strain and displacement data on a low-rise structure in Southern Shores, North Carolina. To date over seventy-five hundred data sets have been collected at the Southern Shores site in a variety meteorological conditions up to and including hurricane-force winds. This paper provides details of the system, its development, and preliminary assessment of its performance. A description of the field site, the instrumented structure, and the instrumentation system is provided. In addition, an example of the data collected during three hurricanes is presented. The primary goal of this paper is to provide the reader with the necessary technical details to appropriately interpret data from this experiment, which will be presented in future publications currently under development.