• Title/Summary/Keyword: Full integral abutment bridge

Search Result 2, Processing Time 0.018 seconds

Structural Performance Evaluation on Ended Block of Wide Flange PSC Girder for the Semi-Integral Bridges (광폭 플랜지 PSC 거더 단부 프리캐스트 블록을 활용한 반일체식교대교량의 구조성능 평가)

  • Ka, Hoon;Choi, Jin-Woo;Kim, Young-Ho;Park, Jong-Myen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Semi-integral abutment bridges are a type of integral abutment bridges. These bridges eliminate expansion joints on the structure and can be used in situations not suitable for full-integral abutment bridge. Moreover, Semi-integral bridges have excellent maintenance and can be economically constructed. This study is about precast wall-type blocks at each end which provide lateral support for PSC girder, as well as acting as retaining walls to resist longitudinal movement of semi-integral abutment bridge. The end-diaphragm connection between ended blocks of PSC girders can be achieved by in-suit nonshrinkage concrete. The results show that 3-point experiment of end-diaphragm beam have an acceptable performance which is so better than results of structural design. Moreover, the effects of backfill soil on semi-integral abutment bridge constructed are analyzed the behavior according to the temperature changes.

Lateral Behavior of Abutment Piles in Full Integral Bridge During 7 Days in Response to Hydration Heat and Drying Shrinkage (수화열과 건조수축에 의한 7일간의 완전 일체식 교량 교대 말뚝기초의 횡방향 거동)

  • ;;;;Thomas A. Bolte
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.127-149
    • /
    • 2003
  • The bridge tested was 3 spans 90m-long PSC beam concrete bridge with a stub-type abutment which had a skew of 60$^{\circ}$ about the axis of bridge. A cement concrete was placed at the superstructural slab of the bridge. Inclinometers and straingauges were installed at piles as well. During 7 days-curing of superstructural slab, the pile behavior in response to hydration heat and drying shrinkage of the slab was monitored. Then monitored values were compared with the horizontal movement obtained from the HACOM program and the calculated lateral behavior obtained from the nonlinear p-y curves of pile. As a result, lateral behavior of H-piles by the field measurement occurred due to the influence of hydration heat and drying shrinkage obtained during curing of superstructural concrete. The lateral displacements by hydration heat and drying shrinkage were 2.2mmand 1.4mm respectively. It was observed as well that the inflection point of lateral displacement of pile was shown at 1.3m down from footing base. It means that the horizontal movement of stub abutment did not behave as the fixed head condition of a pile but behave as a similar condition. The measured bending stress did not show the same behavior as the fixed head condition of pile but showed a similar condition. The increment of maximum bending stress obtained from the nonlinear p-y curves of pile was about 300(kgf/$\textrm{km}^2$) and was 2 times larger than measured values regardless of installation places of straingauges. Meanwhile, lateral load, maximum lateral displacement, maximum bending stress and maximum bending moment of pile showed a linear behavior as curing of superstructural concrete slab.