• 제목/요약/키워드: Full bridge converter

검색결과 507건 처리시간 0.035초

Novel soft switching FB DC-DC converter (새로운 소프트 스위칭 FB DC-DC 컨버터)

  • 김은수;최해영;조기연;계문호;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.251-255
    • /
    • 1997
  • The conventional high frequency phase-shifted full bridge dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this paper provides a circulating current free type high frequency soft switching phase-shifted full bridge (FB) dc/dc converter with energy recovery snubber (ERS) attached at the secondary side of transformer. The energy recovery snubber (ERS) adopted in this study is consisted of three fast recovery diode(Ds1, DS2, Ds3), two resonant capacitor (Cs1, Cs2)

  • PDF

A Design of Driving Circuit for Microwave oven using Phase-shifted FB-ZVS PWM Switching (Phase-shifted FB-ZVS PWM 스위칭을 이용한 Micorwave oven 구동회로 설계)

  • 이완윤;정교범;신판석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제6권3호
    • /
    • pp.265-272
    • /
    • 2001
  • The traditional 60[Hz] power supply for during magnetron in microwave oven has disadvantages of heavy weight and low efficiency due to 60[Hz] High Voltage Transformer(HVT), capacitor and th phase control of thyristors. To alleviate these disadvantages, this paper proposes a 20[kHz] phase-shifted Full-Bridge(FB) Zero-Voltage-Switched(ZVS) PWM converter for driving a 600[W] magnetron in an 1[kW] microwave oven. The proposed converter has advantages of light weight and high power density.

  • PDF

Controller Design for a Quick Charger System Suitable for Electric Vehicles

  • Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1122-1130
    • /
    • 2013
  • This paper proposes a new design for quick battery charger systems for electric vehicles that consists of a three-phase inverter and a full-bridge converter which use the phase-shift method. The 3-phase inverter controls the input and DC-link voltage by use of a current controller and a voltage controller. The full-bridge converter transfers the DC-link voltage to a fixed output voltage. Designs for the output-side converter and controller for improved performance are proposed in this paper. Design schemes for the filter and controller of an input-side inverter are also presented. Furthermore, the paper proposes a compensation method for the offset current that is caused by switch failure and circuit problems. Simulations and experiments have been performed on a 50kW-battery charger system that is suitable for vehicles. The presented results verify the validity of the proposed method and the superiority of the system over conventional methods.

Design of Integrated Magnetic Transformer for ZVS Phase Shift Full Bridge Converter

  • Li, Xin-Lan;Jang, Eun-Sung;Shin, Yong-Whan;Won, Jae-Sun;Kim, Jong-Sun;Oh, Dong-Seong;Shin, Hwi-Beom
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.40-42
    • /
    • 2008
  • This integrated magnetic (IM) transformer is proposed for a phase shifted full bridge (PSFB) converter with zero voltage switching (ZVS). In a new IM transformer, the transformer is located on the center leg of E-core and the output inductor is wound on two outer legs. The proposed circuit is analyzed electrically and magnetically. An E-core is redesigned and implemented. The proposed IM transformer is experimentally compared with the conventional one through a 1.2kW prototype converter.

  • PDF

A study on the ZVZCS(Zero-Voltage and Zero-Current-Switching) Full-Bridge converter using the secondary coupled inductor and auxiliary capacitor (2차측 결합인덕터와 보조커패시터를 이용한 영전압?영전류 풀브리지 컨버터에 관한 연구)

  • Kim, Dong-Won;Kim, Yong;Bae, Jin-Yong;Eom, Tae-Min;Lee, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.926-927
    • /
    • 2008
  • This paper presents the ZVZCS(Zero- Voltage and Zero-Current-Switching) Full-Bridge converter using the secondary coupled inductor and auxiliary capacitor. The converter with phase-shift control is proposed to reduce the circulating loss in primary and the voltage stress in secondary side. Using a coupled winding of the output inductor, two auxiliary capacitors are generated to reset the primary current at circulating interval.

  • PDF

A Study on the Power Supply System for the Arc Lamp (아크램프를 위한 전원공급 시스템의 연구)

  • La, Jae Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제67권3호
    • /
    • pp.125-130
    • /
    • 2018
  • Arc lamps are now widely utilized as illumination sources for a large number of investigations in wide-field fluorescence microscopy. Among many power converters for the lamp, the PSFB (Phase-Shift Full-Bridge) converter with the ZVS (Zero Voltage Switching) is the most widely used soft switched circuit in high-power applications. Also, in the most luminaries, the power factor has to be more and more important. Thus, the power factor correction(PFC) must be included in the power system. A new igniter module using the switching power device and the transformer is proposed instead of the conventional igniter using the mechanical contactor. The proposed converter with the high power factor and high efficiency is verified through the experimental works.

Battery charging device using DMFC for an electric bicycle (DMFC를 사용한 전기자전거 배터리 충전장치)

  • Kim, Young-Ho;Ji, Young-Hyok;Kim, Jae-Hyung;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.255-258
    • /
    • 2008
  • In this paper, the battery charging device using DMFC(Direct Methanol Fuel Cell) for electric bicycle is proposed. In the proposed system, phase-shift full-bridge converter is used as a battery charger by boosting the 12V DMFC output voltage up to 36V. By using the phase-shift technique, the ringing of the transformer is reduced and the efficiency of the converter can be improved. The operation modes of proposed phase-shift full-bridge converter is analyzed and verified by the simulation and the experimental results.

  • PDF

Zero-Voltage and Zero-Current-Switching (ZVZCS) Full Bridge PWM Converter with Zero Current Ripple

  • Baek, J.-W.;Cho, J.G.;Jeong, C.Y.;Yoo, D.W.
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.79-84
    • /
    • 1998
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter with low output current ripple is presented. A simple auxiliary circuit added in the secondary provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches, as well as reduces the output current ripple (ideally zero ripple). The auxiliary circuit includes neither lossy components nor additional active switches which are demerits of the previously presented ZVZCS converters. Many advantages including simple circuit topology, high efficiency, low cost and low current ripple make the new converter attractive for high performance high power (>1kW) applications. The principle of operation, features and design considerations are illustrated and verified on a 2.5kW, 100KHz IGBT based experimental circuit.

  • PDF

The Impact of Parasitic Elements on Spurious Turn-On in Phase-Shifted Full-Bridge Converters

  • Wang, Qing
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.883-893
    • /
    • 2016
  • This paper presents a comprehensive analysis of the spurious turn-on phenomena in phase-shifted full-bridge (PSFB) converters. The conventional analysis of the spurious turn-on phenomenon does not establish in the PSFB converter as realizing zero voltage switching (ZVS). Firstly, a circuit model is proposed taking into account the parasitic capacitors and inductors of the transistors, as well as the parasitic elements of the power circuit loop. Second, an exhaustive investigation into the impact of all these parasitic elements on the spurious turn-on is conducted. It has been found that the spurious turn-on phenomenon is mainly attributed to the parasitic inductors of the power circuit loop, while the parasitic inductors of the transistors have a weak impact on this phenomenon. In addition, the operation principle of the PSFB converter makes the leading and lagging legs have distinguished differences with respect to the spurious turn-on problems. Design guidelines are given based on the theoretical analysis. Finally, detailed simulation and experimental results obtained with a 1.5 kW PSFB converter are given to validate proposed analysis.

A Study on the Battery Charger for Next Generation High Speed Train (차세대 고속 전철용 Battery Charger 에 관한 연구)

  • Jeong, Han-Jeong;Lee, Won-Cheol;Lee, Sang-Seok;Paik, Jin-Sung;Won, Chung-Yuen
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2008
  • Recently, there is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Among them, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF