• Title/Summary/Keyword: Full Segment

Search Result 96, Processing Time 0.032 seconds

On eigenvalue problem of bar structures with stochastic spatial stiffness variations

  • Rozycki, B.;Zembaty, Z.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.541-558
    • /
    • 2011
  • This paper presents an analysis of stochastic eigenvalue problem of plane bar structures. Particular attention is paid to the effect of spatial variations of the flexural properties of the structure on the first four eigenvalues. The problem of spatial variations of the structure properties and their effect on the first four eigenvalues is analyzed in detail. The stochastic eigenvalue problem was solved independently by stochastic finite element method (stochastic FEM) and Monte Carlo techniques. It was revealed that the spatial variations of the structural parameters along the structure may substantially affect the eigenvalues with quite wide gap between the two extreme cases of zero- and full-correlation. This is particularly evident for the multi-segment structures for which technology may dictate natural bounds of zero- and full-correlation cases.

An Adaptation System based on Personalized Web Content Items for Mobile Devices

  • Kim, Su-Do;Park, Man-Gon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.628-646
    • /
    • 2009
  • Users want to browse and search various web contents with mobile devices which can be used anywhere and anytime without limitations, in the same manner as desktop. But mobile devices have limited resources compared to desktop in terms of computing performance, network bandwidth, screen size for full browsing, and etc, so there are many difficulties in providing support for mobile devices to fully use desktop-based web contents. Recently, mobile network bandwidth has been greatly improved, however, since mobile devices cannot provide the same environment as desktop, users still feel inconvenienced. To provide web contents optimized for each user device, there have been studies about analyzing code to extract blocks for adaptation to a mobile environment. But since web contents are divided into several items such as menu, login, news, shopping, etc, if the block dividing basis is limited only to code or segment size, it will be difficult for users to recognize and find the items they need. Also it is necessary to resolve interface issues, which are the biggest inconvenience for users browsing in a mobile environment. In this paper, we suggest a personalized adaptation system that extracts item blocks from desktop-based web contents based on user interests, layers them, and adapts them for users so they can see preferred contents first.

Improved prestressed concrete girder with hybrid segments system

  • Yim, Hong Jae;Yang, Jun Mo;Kim, Jin Kook
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.183-190
    • /
    • 2018
  • The prestressed concrete (PSC) technology that was first developed by Freyssinet has significantly improved over the past century in terms of materials and structural design in order to build longer, slender, and more economic structures. The application of prestressing method in structures, which is determined by the pre-tension or post-tension processes, is also affected by the surrounding conditions such as the construction site, workforce skills, and local transportation regulations. This study proposes a prestressed concrete girder design based on a hybrid segment concept. The adopted approach combines both pre-tension and post-tension methods along a simple span bridge girder. The girder was designed using newly developed 2400 MPa PS strands and 60 MPa high-strength concrete. The new concept and high strength materials allowed longer span, lower girder depth, less materials, and slender design without affecting the lateral stability of the girder. In order to validate the applicability of the proposed hybrid prestressed segments girder, a full-scale 35 m girder was fabricated, and experimental tests were performed under various fatigue and static loading conditions. The experimental results confirmed the feasibility of the proposed long-span girder as its performance meets the railway girder standards. In addition, the comparison between the measured load-displacement curve and the simulation results indicate that simulation analysis can predict the behavior of hybrid segments girders.

Congenital Esophageal Atresia with Tracheoesophageal Fistula -A Case Report- (선천성 식도폐쇄 및 기관식도루 -1례 보고-)

  • Lee, Mun-Geum;Jang, Un-Ha
    • Journal of Chest Surgery
    • /
    • v.27 no.6
    • /
    • pp.489-493
    • /
    • 1994
  • Our patient was a 2.3 kg, male of 33 weeks gestation and spontaneous vaginal delivery. Copious salivary secretion, mild aspiration pneumonia episode due to tracheoesophageal fistula and intermittent cyanotic appearance due to hypoxia were noted shortly after birth. Head up position, frequent upper pouch suction, and adequate fluid and antibiotic therapy were done in incubator. Combined Chest and abdominal film was revealed gas in the stomach and an haziness in right chest with mediastinal shift to the right side. Esophagogram revealed markedly dilated proximal esophagus as blind pouch, and Two dimensional echocardiography showed the Ventricular Septal Defect. The conclusion was congenital esophageal atresia with tracheoesophageal fistula, Vogt-Gross type C, Waterston Risk Category B. Surgical correction with Beardmore anastomosis was performed extrapleurally through 3rd rib bed after the cannulation of umbilical vein and preliminary gastrostomy. The fistula was closed by triple ligation and the upper pouch was then brought down to the presenting surface of the lower esophageal segment that incised, and end to side anastomosis was underwent using interrupt suture placed through the full thickness of both upper pouch and lower esophageal segment. The postoperative patient was well tolerated and recovered uneventfully, permitted feeding on 7th postoperative day after esophagogram.

  • PDF

Surgical outcomes of 14 consecutive bilateral cleft lip patients treated with a modified version of the Millard and Manchester methods

  • Al-Zajrawee, Mustafa Zahi;Aljodah, Mohammed Abd-Alhussein;Hassan, Qays Ahmed
    • Archives of Plastic Surgery
    • /
    • v.46 no.2
    • /
    • pp.114-121
    • /
    • 2019
  • Background Bilateral cleft lip deformity is much more difficult to correct than unilateral cleft lip deformity. The complexity of the deformity and the sensitive relationships between the arrangement of the muscles and the characteristics of the external lip necessitate a comprehensive preoperative plan for management. The purpose of this study was to evaluate the repair of bilateral cleft lip using the Byrd modification of the traditional Millard and Manchester methods. A key component of this repair technique is focused on reconstruction of the central tubercle. Methods Fourteen patients with mean age of 5.7 months presented with bilateral cleft lip deformity and were operated on using a modification of the Millard and Manchester techniques. Patients with a very wide cleft lip and protruded or rotated premaxilla were excluded from this study. We analyzed 30 normal children for a comparison with our patients in terms of anthropometric measurements. Results By the end of the follow-up period (between 9 and 19 months), all our patients had obtained a full central segment with adequate white roll in the central segment and a deep gingivolabial sulcus, and we obtained nearly normal anthropometric measurements in comparison with age-matched normal children. Conclusions We recommend this modified technique for the treatment of bilateral cleft lip deformity.

Electromagnetic design and optimization of the multi-segment dielectric-loaded accelerating tube using genetic algorithm

  • M. Nikbakht;H. Afarideh;M. Ghergherehchi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4625-4635
    • /
    • 2022
  • A low-energy dielectric loaded accelerator with a non-uniform, multi-segment structure is studied and optimized. So far, no analytical solution is provided for such structures. Also, due to the existing nonlinear behavior and a large number of geometric parameters, the problem of numerical optimizations is complex. For this reason, a method is presented to design and optimize such structures using the Genetic Algorithm (GA). Moreover, the GA output results are compared with Trust Region (TR) and Nelder-Mead Simplex (NMS) methods. Comparative results show that the GA is more efficient in achieving optimization goals and also has a higher speed than the two other methods. Finally, an optimized accelerating tube is integrated into a proper coupler. Then, the accelerator is simulated for full electromagnetic investigations using the CST suite of codes. This design leads to a structure with a power of about 80 kW in the X-band, which delivers electrons to the output energy in the range of 300-459 kV. The length and outer diameter of the accelerating tube obtained are 10 cm and 1 cm, respectively.

Physical test study on double-row long-short composite anti-sliding piles

  • Shen, Yongjiang;Wu, Zhijun;Xiang, Zhengliang;Yang, Ming
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.621-640
    • /
    • 2017
  • The double-row long-short composite anti-sliding piles system is an effective way to control the landslides with high thrust. In this study, The double-row long-short composite anti-sliding piles with different load segment length (cantilever length) and different pile row spacing were studied by a series of physical tests, by which the influences of load segment length of rear-row piles as well as pile row spacing on the mechanical response of double-row long-short composite anti-sliding pile system were investigated. Based on the earth pressures in front of and behind the piles obtained during tests, then the maximum bending moments of the fore-row and the rear-row piles were calculated. By ensuring a equal maximum moments in the fore-row and the rear-row piles, the optimum lengths of the rear-row piles of double-row long-short composite system under different piles spacing were proposed. To investigate the validity of the reduced scale tests, the full-scale numerical models of the landside were finally conducted. By the comparisons between the numerical and the physical test results, it could be seen that the reduced scale tests conducted in this study are reliable. The results showed that the double-row long-short composite anti-sliding piles system is effective in the distribution of the landslide thrust to the rear-row and the fore-row piles.

A Sequential Indexing Method for Multidimensional Range Queries (다차원 범위 질의를 위한 순차 색인 기법)

  • Cha Guang-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.254-262
    • /
    • 2005
  • This paper presents a new sequential indexing method called segment-page indexing (SP-indexing) for multidimensional range queries. The design objectives of SP-indexing are twofold:(1) improving the range query performance of multidimensional indexing methods (MIMs) and (2) providing a compromise between optimal index clustering and the full index reorganization overhead. Although more than ten years of database research has resulted in a great variety of MIMs, most efforts have focused on data-level clustering and there has been less attempt to cluster indexes. As a result, most relevant index nodes are widely scattered on a disk and many random disk accesses are required during the search. SP-indexing avoids such scattering by storing the relevant nodes contiguously in a segment that contains a sequence of contiguous disk pages and improves performance by offering sequential access within a segment. Experimental results demonstrate that SP-indexing improves query performance up to several times compared with traditional MIMs using small disk pages with respect to total elapsed time and it reduces waste of disk bandwidth due to the use of simple large pages.

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

Relationship Between Muscle Mass and Usual Walking Speed Mediated by Muscle Strength, Respiration and Depression in Elderly Female

  • Yun-jeong Baek;Chung-hwi Yi;Oh-yun Kwon;Sang-hyun Cho
    • Physical Therapy Korea
    • /
    • v.30 no.3
    • /
    • pp.202-210
    • /
    • 2023
  • Background: The elderly population is increasing rapidly worldwide. Muscle mass, usual walking speed (UWS), knee extension strength (KES), hand grip strength (HGS), peak expiratory flow (PEF), and depression is used for sarcopenia diagnosis. All four of these factors (KES, HGS, PEF, and depression) correlated with UWS and also to muscle mass. But, many studies have suggested that no correlation exists between muscle mass and UWS. Objects: This study aimed: 1) to investigate whether muscle mass reduction affected UWS, as mediated by KES, HGS, PEF and depression, and 2) to explored whether significant changes in these mediators varied by the body segment in which muscle mass evaluated in elderly female aged 65-80 years. Methods: A total of 100 female aged 65-80 years were surveyed. Muscle mass was measured by body segment (upper and lower segment), and KES, HGS, PEF, depression, and UWS were also assessed. Median analyses were progressed in IBM SPSS software (ver. 23.0, IBM Co.) using a downloaded INDIRECT macro. Results: The direct effect of the KES and PEF were significant, and the indirect effect of KES and PEF were not significant. Thus, KES and PEF served as full mediators of the effect of muscle mass on UWS. Regardless of bodily region, KES and PEF combined with muscle mass were significant mediators of UWS, with similar indirect effect sizes. Conclusion: KES and PEF are the only mediators regardless of body part. Therefore, mediating the KES and PEF may prevent sarcopenia progression in elderly female. Also, sarcopenia can be readily assessed by evaluating either the upper or lower body; it is not necessary to measure total muscle mass.