• Title/Summary/Keyword: Full Energy Peak Efficiency (FEPE)

Search Result 4, Processing Time 0.015 seconds

Effects of element composition in soil samples on the efficiencies of gamma energy peaks evaluated by the MCNP5 code

  • Ba, Vu Ngoc;Thien, Bui Ngoc;Loan, Truong Thi Hong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.337-343
    • /
    • 2021
  • In this work, self-absorption correction factor related to the variation of the composition and the density of soil samples were evaluated using the p-type HPGe detector. The validated MCNP5 simulation model of this detector was used to evaluate its Full Energy Peak Efficiency (FEPE) under the variation of the composition and the density of the analysed samples. The results indicates that FEPE calculation of low gamma ray is affected by the composition and the density of soil samples. The self-absorption correction factors for different gamma-ray energies which was fitted as a function of FEPEs via density and energy and fitting parameters as polynomial function for the logarithm neper of gamma ray energy help to calculate quickly the detection efficiency of detector. Factor Analysis for the influence of the element composition in analysed samples on the FEPE indicates the FEPE distribution changes from non-metal to metal groups when the gamma ray energy increases from 92 keV to 238 keV. At energies above 238 keV, the FEPE primarily depends only on the metal elements and is significantly affected by aluminium and silicon composition in soil samples.

STUDY ON THE EFFECT OF THE SELF-ATTENUATION COEFFICIENT ON γ-RAY DETECTOR EFFICIENCY CALCULATED AT LOW AND HIGH ENERGY REGIONS

  • El-Khatib, Ahmed M.;Thabet, Abouzeid A.;Elzaher, Mohamed A.;Badawi, Mohamed S.;Salem, Bohaysa A.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • The present work used the efficiency transfer method used to calculate the full energy peak efficiency (FEPE) curves of the (2"*2" & 3"*3") NaI (Tl) detectors based on the effective solid angle subtended between the source and the detector. The study covered the effect of the self attenuation coefficient of the source matrix (with a radius greater than the detector's radius) on the detector efficiency. $^{152}$ An Eu aqueous radioactive source covering the energy range from 121.78 keV up to 1408.01 keV was used. In this study an empirical formula was deduced to calculate the difference between the measured and the calculated efficiencies [without self attenuation] at low and high energy regions. A proper balance between the measured and calculated efficiencies [with self attenuation] was achieved with discrepancies less than 3%, while reaching 39% for calculating values [without self attenuation] due to working with large sources, or for low photon energies.

Research and Verification of Distance and Dead Thickness Changes of Coaxial HPGe Detectors using PENELEOPE Simulation (PENELEOPE 시뮬레이션을 이용한 동축 HPGe 검출기의 거리 및 외부 접촉 층 두께 변화 연구 및 검증)

  • Eun-Sung Jang;Byung-In Min
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.175-184
    • /
    • 2023
  • Based on the actual shape of the detector and the data provided by the manufacturer, the shape of the detector was implemented through Penelope simulation and applied to the appropriate four-layer thickness based on the efficiency obtained from the measurements. Efficiency calculations to determine the effect of the simulated number of Full Energy Peak Efficiency(FEPE) channels in the detector and the outside contact layer in the crystal on the Full Energy Peak Efficiency were performed for various four-layer thicknesses of 0.3, 0.5, 0.7, 1.0, 1.2, and 1.4 mm using the Penelope Code. When the thickness of the external contact layer was increased by 5 times, the Full Energy Peak Efficiency decreased by about 36% for 59.50 keV, and the Full Energy Peak Efficiency decreased by 10% for 1836. In addition, as it increased by 10 times, the Full Energy Peak Efficiency decreased by about 20% for 59.54 keV, and 7% for 1836.01 keV. The Penelope simulated Full Energy Peak Efficiency channel decreases exponentially with the increase in the four layers. In addition, it was confirmed that the total effect curve was well matched with a relative difference of less than 3.5% in the 0.3-1.4 mm dead layer thickness region. However, it was found that the inhomogeneous dead layer is still a parameter in the Monte Carlo model.

The effect of front edge on efficiency for point and volume source geometries in p-type HPGe detectors

  • Esra Uyar ;Mustafa Hicabi Bolukdemir
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4220-4225
    • /
    • 2022
  • Monte Carlo (MC) simulations are increasingly being used as an alternative or supplement to the gamma spectrometric method in determining the full energy peak efficiency (FEPE) necessary for radionuclide identification and quantification. The MC method is more advantageous than the experimental method in terms of both cost and time. Experimental calibration with standard sources is difficult, especially for specimens with unusually shaped geometries. However, with MC, efficiency values can be obtained by modeling the geometry as desired without using any calibration source. Modeling the detector with the correct parameters is critical in the MC method. These parameters given to the user by the manufacturer are especially the dimensions of the crystal and its front edge, the thickness of the dead layer, dimensions, and materials of the detector components. This study aimed to investigate the effect of the front edge geometry of the detector crystal on efficiency, so the effect of rounded and sharp modeled front edges on the FEPE was investigated for <300 keV with three different HPGe detectors in point and volume source geometries using PHITS MC code. All results showed that the crystal should be modeled as a rounded edge, especially for gamma-ray energies below 100 keV.