• Title/Summary/Keyword: Fukushima Nuclear Accident

Search Result 227, Processing Time 0.025 seconds

Risk Management on Radiation Under Prolonged Exposure Situation - Focusing on the Tokyo Metropolitan Area in Japan Under the TEPCO Fukushima dai-ich NPP Accident -

  • Iimoto, Takeshi;Hayashi, Rumiko;Kuroda, Reiko;Furusawa, Mami;Umekage, Tadashi;Ohkubo, Yasushi;Takahashi, Hiroyuki;Nakamura, Takashi
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2012
  • Examples and experiences of risk management on radiation under prolonged exposure situation are shown. The accident of the Fukushima dai-ichi nuclear power plant after the great east Japan earthquake (11 March, 2011) elevates background level of environmental radiation around the east Japan. For example, ambient dose equivalent rate around Tohkatsu area next to Tokyo located about 200 km-south from the plant, is about 0.1-0.6 micro-Sv $h^{-1}$ mainly due to $^{134}Cs$ and $^{137}Cs$ falling on the ground soil. This level is about double or up to ten times higher than the genuine natural level around the area. International Commission on Radiological Protection (ICRP) recommends how to face the existing exposure situation; that is the prolonged exposure situation. Referring to ICRP's reports and/or related international/domestic documents, we have been discussing and acting to gain public's safety and relief, who have a possibility to be exposed to prolonged lower-dose radiation. Here, we introduce our several experiences on risk management, especially focusing on risk communication, radiation education to public, and stakeholder involvements into making decision in local governments on radiation protection, relating to the accident.

Risk Management on Radiation under Prolonged Exposure Situation - Focusing on the Tokyo Metropolitan Area in Japan Under the TEPCO Fukushima Dai-ich NPP Accident -

  • Iimoto, Takeshi;Hayashi, Rumiko;Kuroda, Reiko;Furusawa, Mami;Umekage, Tadashi;Ohkubo, Yasushi;Takahashi, Hiroyuki;Nakamura, Takashi
    • International Journal of Safety
    • /
    • v.10 no.2
    • /
    • pp.6-9
    • /
    • 2011
  • Examples and experiences of risk management on radiation under prolonged exposure situation are shown. The accident of the Fukushima dai-ichi nuclear power plant after the great east Japan earthquake (11 March, 2011) elevates background level of environmental radiation around the east Japan. For example, ambient dose equivalent rate around Tohkatsu area next to Tokyo located about 200 km-south from the plant, is about 0.1-0.6 micro-Sv $h^{-1}$ mainly due to $^{134}Cs$ and $^{137}Cs$ falling on the ground soil. This level is about double or up to ten times higher than the genuine natural level around the area. International Commission on Radiological Protection (ICRP) recommends how to face the existing exposure situation; that is the prolonged exposure situation. Referring to ICRP's reports and/or related international/domestic documents, we have been discussing how to manage this situation and acting to gain safety and relief of public, who have a possibility to be exposed to prolonged lower-dose radiation. Here, we introduce our several experiences on risk management, especially focusing on risk communication, radiation education to public, and stakeholder involvements into decision making in local governments on radiation protection, relating to the accident.

  • PDF

Nuclear Safety Analysis with the Performance of NPPs (원전운전지표를 이용한 원전의 안전성 변화 분석)

  • Park, Wooyoung
    • Environmental and Resource Economics Review
    • /
    • v.26 no.2
    • /
    • pp.139-172
    • /
    • 2017
  • Nuclear safety measures such as safety technology, culture, and regulation affects nuclear performances. This paper analyzes the change of nuclear performance by considering nuclear safety measures. Nuclear performance and technical data ranging 1970 to 2015 are collected from the Power Reactor Information System (PRIS) of IAEA. The result of panel regression analysis shows that overall engineering level, maintenance engineering and productivity decrease the forced loss rate (FLR). FLR structurally increase after Chernobyl accident in 1986 whereas after TMI and Fukushima accidents FLR didn't show any significant changes. The structural increase of FLR after Chernobyl are likely to result from the efforts of international communities for nuclear safety culture which makes nuclear operating company pay more opportunity cost to achieve nuclear safety.

Holistic Approach to Multi-Unit Site Risk Assessment: Status and Issues

  • Kim, Inn Seock;Jang, Misuk;Kim, Seoung Rae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.286-294
    • /
    • 2017
  • The events at the Fukushima Daiichi Nuclear Power Station in March 2011 point out, among other matters, that concurrent accidents at multiple units of a site can occur in reality. Although site risk has been deterministically considered to some extent in nuclear power plant siting and design, potential occurrence of multi-unit accident sequences at a site was not investigated in sufficient detail thus far in the nuclear power community. Therefore, there is considerable worldwide interest and research effort directed toward multi-unit site risk assessment, especially in the countries with high-density nuclear-power-plant sites such as Korea. As the technique of probabilistic safety assessment (PSA) has been successfully applied to evaluate the risk associated with operation of nuclear power plants in the past several decades, the PSA having primarily focused on single-unit risks is now being extended to the multi-unit PSA. In this paper we first characterize the site risk with explicit consideration of the risk associated with spent fuel pools as well as the reactor risks. The status of multi-unit risk assessment is discussed next, followed by a description of the emerging issues relevant to the multi-unit risk evaluation from a practical standpoint.

Necessity of management for minor earthquake to improve public acceptance of nuclear energy in South Korea

  • Choi, Hyun-Tae;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.494-503
    • /
    • 2018
  • As public acceptance of nuclear energy in Korea worsens due to the Fukushima accident and the earthquakes that occurred in the Gyeongju area near the Wolsong nuclear power plant (NPP), estimating the effects of earthquakes has become more essential for the nuclear industry. Currently, most countermeasures against earthquakes are limited to large-scale disasters. Minor-scale earthquakes used to be ignored. Even though people do not feel the shaking due to minor earthquakes and minor earthquakes incur little damage to NPPs, they can change the environmental conditions, for instance, underground water level and the conductivity of the groundwater. This study conducted a questionnaire survey of residents living in the vicinity of an NPP to determine their perception and acceptance of plant safety against minor earthquakes. The results show that the residents feel earthquakes at levels that can be felt by people, but incur little damage to NPPs, as minor earthquakes (magnitude of 2.0-3.9) and set this level as a standard for countermeasures. Even if a minor earthquake has little impact on the safety of an NPP, there is still a possibility that public opinion will get worse. This study provides analysis results about problems of earthquake measures of Korean NPPs and specific things that can bring about an effect of deterioration of public acceptance. Based on these data, this article suggests that active management of minor earthquakes is necessary for the sustainability of nuclear energy.

A Study on Contents for Safety education of The Power Plant applied to the Story-viewing (스토리뷰잉을 적용한 발전소 안전교육 콘텐츠)

  • Min, soel-hui;Choi, sung-wook;Song, in-heon;Hong, sam-dong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.439-440
    • /
    • 2015
  • There has been a big need of Safety Education for the power plants with a high risk due to the Fukushima Daiichi nuclear disaster and the tragic accident of Sewol Ferry. The object of this research is for studying ways of developing contents for customized Power Plants Safety Education applied with 'Story Viewing' technology in order to improve the present format of Power Plant Safety Education based on hard copied documents so as to prevent human mistakes because of lack of system and ability of initial response which come from safety frigidity shown in the case of Sewol Accident. 'Story-viewing' applied to Power Plant Safety Education is the methodology to enhance information communicability utilizing IT/Visualization technology combined with Story Telling that is an effective propagation way.

  • PDF

Conceptual Design of Emergency Communication System to Cope with Severe Accident in Nuclear Power Plants (중대사고를 대비한 원전비상통신시스템 개념설계)

  • Son, Kwang Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.58-69
    • /
    • 2014
  • To cope with sever accident like Fukushima accident, the emergency response system is needed. It consist of the hardened I&C system and the mobile control station. The hardened I&C system monitors the state in the nuclear power plant and controls the emergency equipment such as valves, pumps and the mobile control station placed at 30km away from nuclear power plant receives the status information from the hardened I&C system and transmits the control data to the hardened I&C system. In this paper, we design the emergency communication system connecting the hardened I&C system to the mobile control station and analyze the performance of the system. This system consists of the terrestrial communication system and the satellite communication. The performance such as a communication link budget, throughput and delay time is analyzed for each system.

Evaluating the Application of Portable Safety Equipment in Nuclear Power Plants using Multi-unit PSA (다수기 PSA 기반 원자력 발전소 이동형 안전 설비 활용성 평가)

  • Jae Young Yoon;Ho-Gon Lim;Jong Woo Park
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.110-120
    • /
    • 2023
  • Following the Fukushima accident, portable equipment employed as accident mitigating systems have been installed and operated to reduce core damage and large early release frequencies. In addition, the establishment of an accident management strategy has gained importance. This study investigated the current status of portable equipment including the international portable equipment FLEX (diverse and flexible coping strategies), and domestic portable equipment multi-barrier accident coping strategy (MACST). Research on optimal utilization of MACST remains insufficient. As a preliminary study for establishing an optimal strategy, sensitivity studies were conducted to facilitate the priority of use on portable equipment, number of portable equipment, and dependency of operator actions based on a multi-unit probabilistic safety assessment model. The results revealed the conditions that reduced the multi-unit and site conditional core damage probabilities, indicating the optimal strategy of MACST. The results of this study can be used as a reference for establishing an optimal strategy that utilizes domestic safety equipment in the future.

Development of MURCC code for the efficient multi-unit level 3 probabilistic safety assessment

  • Jung, Woo Sik;Lee, Hye Rin;Kim, Jae-Ryang;Lee, Gee Man
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2221-2229
    • /
    • 2020
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, level 3 probabilistic safety assessment (PSA) has emerged as an important task in order to assess the risk level of the multi-unit NPPs in a single nuclear site. Accurate calculation of the radionuclide concentrations and exposure doses to the public is required if a nuclear site has multi-unit NPPs and large number of people live near NPPs. So, there has been a great need to develop a new method or procedure for the fast and accurate offsite consequence calculation for the multi-unit NPP accident analysis. Since the multi-unit level 3 PSA is being currently performed assuming that all the NPPs are located at the same position such as a center of mass (COM) or base NPP position, radionuclide concentrations or exposure doses near NPPs can be drastically distorted depending on the locations, multi-unit NPP alignment, and the wind direction. In order to overcome this disadvantage of the COM method, the idea of a new multiple location (ML) method was proposed and implemented into a new tool MURCC (multi-unit radiological consequence calculator). Furthermore, the MURCC code was further improved for the multi-unit level 3 PSA that has the arbitrary number of multi-unit NPPs. The objectives of this study are to (1) qualitatively and quantitatively compare COM and ML methods, and (2) demonstrate the strength and efficiency of the ML method. The strength of the ML method was demonstrated by the applications to the multi-unit long-term station blackout (LTSBO) accidents at the four-unit Vogtle NPPs. Thus, it is strongly recommended that this ML method be employed for the offsite consequence analysis of the multi-unit NPP accidents.

Assessing the Potential of Small Modular Reactors (SMRs) in Spent Nuclear Fuel Management: A Review of the Generation IV Reactor Progress

  • Hong June Park;Sun Young Chang;Kyung Su Kim;Pascal Claude Leverd;Joo Hyun Moon;Jong-Il Yun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.571-576
    • /
    • 2023
  • The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.