• Title/Summary/Keyword: Fugacity

Search Result 88, Processing Time 0.028 seconds

Environmental Fate Tracking of Manure-borne NH3-N in Paddy Field Based on a Fugacity Model (Fugacity 모델에 기초한 논토양에서의 액비살포에 따른 암모니아성 질소 거동추적)

  • Kim, Mi-Sug;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.224-233
    • /
    • 2019
  • Nitrogen components in liquid manure can reduce safety and quality of environment harmfully. To minimize the environmental risks of manure, understanding fate of manure in environment is necessary. This study aimed at investigating applicability of a simplified Level III fugacity model for simulating $NH_3-N$ component to analyze environmental fate and transport of $NH_3-N$ in liquid manure and to provide basis for improving management of N in the liquid manure system and for minimizing the environmental impacts of N. The model simulation conducted for four environmental compartments (air, water, soil, and rice plants) during rice-cropping to trace $NH_3-N$ component and provided applicability of the Level III fugacity model in studying the environmental fate of $NH_3-N$ in manure. Most of $NH_3-N$ was found in water body and in rice plants depending upon the physicochemical properties and proper removal processes. For more precise model results, the model is needed to modify with the detailed removal processes in each compartment and to collect proper and accurate information for input parameters. Further study should be about simulations of various N-typed fertilizers to compare with the liquid manure based on a modified and relatively simplified Level III fugacity model.

Prediction of Distribution for Five Organic Contaminants in Biopiles by Level I Fugacity Model (Level I Fugacity Model을 이용한 Biopile 내 유기화합물 5종의 분포 예측)

  • Kim, Kye-Hoon;Kim, Ho-Jin;Pollard, Simon J.T.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.228-234
    • /
    • 2008
  • The purpose of this study was to predict environmental distribution of anthracene, benzene, benzo[a]pyrene, 1-methylphenanthrene and phenanthrene in a four phase biopile system - air, water, soil and non aqueous phase liquid (NAPL) phase using level I fugacity model. Soil samples used for this study were collected from three sites in the United Kingdom which were historically contaminated with petroleum hydrocarbons. The level I fugacities (f) for the five contaminants were markedly different, however, the fugacities of each contaminant in three soil samples did not show significant difference. NAPL and soil were the dominant phases for all five contaminants. Results of this study indicated that difference in percentage of organic carbon strongly influenced the partitioning behavior of the cntaminants. The presence of benzene calls for an urgent need for risk-based management of air and water phase. Whereas insignificant amount of chemicals leached in the water phase for other organic contaminants showing greatly reduced potential of groundwater contamination. Furthermore, this study helped us to confirm the association of risk critical contaminants with the residual saturation in treated soils. They also can be used to emphasize the importance of accounting for the partitioning behavior of both NAPL and soil phases in the process of the risk assessment of the sites contaminated with petroleum hydrocarbons.

A Study on Thermodynamic Properties of Ethylene Gas Hydrate

  • Lim, Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E1
    • /
    • pp.10-15
    • /
    • 2007
  • The gas hydrates are probably most sensitive to climate change since they are stable only under specific conditions of high pressure and low temperature. One of the main factors responsible for formation of gas hydrates is the saturation of the gases with water vapor. Quantitative phase equilibrium data and understanding of the roles of water component in the phase behavior of the heterogeneous water-hydrocarbon-hydrate mixture are of importance and of engineering value. In this study, the water content of ethylene gas in equilibrium with hydrate and water phases were analyzed by theoretical and experimental methods at temperatures between 274.15 up to 291.75 K and pressures between 593.99 to 8,443.18 kPa. The experimental and theoretical enhancement factors (EF) for the water content of ethylene gas and the fugacity coefficients of water and ethylene in gas phase were determined and compared with each other over the entire range of pressure carried out in this experiment. In order to get the theoretical enhancement factors, the modified Redlich-Kwong equation of state was used. The Peng-Robinson equations and modified Redlich-Kwong equations of state were used to get the fugacity coefficients for ethylene and water in the gas phase. The results predicted by both equations agree very well with the experimental values for the fugacity coefficients of the compressed ethylene gas containing small amount of water, whereas, those of water vapor do not in the ethylene rich gas at high temperature for hydrate formation locus.

Ore Mineralization of The Copper-bearing Hanae Hydrothermal Vein Deposit (하내 함 동 열수 맥상광상의 광화작용)

  • Choi, Sang-Hoon;Lee, Sunjin;Jun, Youngshik
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.435-443
    • /
    • 2017
  • The Hanae deposit is located within the Cretaceous Gyeongsang Basin. The Cu-bearing hydrothermal quartz vein formed by narrow open-space filling along fracture in the sedimentary rocks as Jindong Formation. The Hanae Cu-bearing hydrothermal deposit shows a paragenetic sequence of pyrrhotite-pyrite $\rightarrow$ pyrite-chalcopyrite-sphalerite(${\pm}$Bi-bearing tellurides) $\rightarrow$ Ag-bearing telluride mineralization $\rightarrow$ secondary mineralization. Fluid inclusion data indicate that the Hanae Cu-bearing hydrothermal mineralization occurred from dominantly aqueous fluids at temperatures of $400^{\circ}C-200^{\circ}C$. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages combined with fluid inclusion data indicate that early main Cu-bearing ore mineralization in the vein starts at about $350^{\circ}C$ which corresponds to sulfur fugacity from about $10^{-9.2}$ to $10^{-8.7}bar$ with oxygen fugacity of about $10^{-32.1}$ to $10^{-29.8}bar$. Late main Cu-bearing ore mineralization in the vein occurs at about $250^{\circ}C$ which corresponds to sulfur fugacity from about $10^{-13.5}$ to $10^{-11.7}bar$ with oxygen fugacity of about $10^{-38.4}$ to $10^{-35.2}bar$. The late Ag-bearing telluride mineralization in the Hanae hydrothermal system occurs at about $200^{\circ}C$ which corresponds to minium Tellirium fugacity value of about $10^{-18}bar$ with sulfur fugacity of about $10^{-14.0}$ to $10^{-10.9}bar$.

Air-Soil Partitioning of PCBs in Rural Area

  • Yeo, Hyun-Gu;Park, Min-Kyu;Chun, Man-Young;Young, Sun-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.1-9
    • /
    • 2003
  • The soil concentrations of polychlorinated biphenyls (PCBs) were measured at 12 sites in Ansung, Kyonggi province, Korea. Correlation coefficient (r) between total PCBs and organic matter content (OM) was significant (r=0.562, p< 0.05). It suggests that organic matter may be a key factor of soil absorption of PCBs. The PCB concentrations of low chlorinated congeners with high vapor pressure were relatively abundant in air but high chlorinated congeners with low vapor pressure were mainly dominated by soil. The results indicated the influence of physicochemical properties of PCBs such as vapor pressure, octanol - air partition coefficient ( $K_{OA}$ ). The calculated soil/air fugacity quotients suggested that the soil may be a source of heavier molecular PCBs (>penta-CBs) to the atmosphere, where lighter molecular PCBs appear to be affected by a movement from air to soil, especially tetra-CBs. Therefore, PCB homologs with low vapor pressure might have been influenced by revolatilization from soil.

Distribution between Air-Soil Concentration of Organochlorine Pesticides (유기염소계 살충제의 대기-토양간 분배)

  • Choi, Min-Kyu;Chun, Man-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.4
    • /
    • pp.299-304
    • /
    • 2007
  • This paper was studied to investigate the equilibrium state between organochlorine pesticides (OCPs) concentration of air and soil, and to know whether soil is a secondary pollution source of OCPs in air or not. The OCPs concentration of air ($C_{air}$) and soil ($C_{soil}$) is not related to molecular weight, vapor pressure ($P_L$) and octanol-air partition coefficient ($K_{oa}$). The slope of the regression line between soil-air partition coefficient ($K_{sa}$) and scavenging coefficient ($C_{soil}/C_{air}$) was 0.2952, which the OCPs concentration between air and soil did not reached to the equilibrium state. The soil/air fugacity quotients ($f_{soil}/f_{air}$) of p, p'-DDT/DDD/DDE and ${\beta}-HCH\;(0.30{\sim}0.67$), which is smaller than 1, means the deposit of OCPs from air to soil. However, $f_{soil}/f_{air}$ of heptachlor, heptachlor epoxide, ${\alpha}/{\gamma}-chlordane$, trans-nonachlor, endosulfan sulfate and ${\alpha}/{\gamma}-HCH\;(1.90{\sim}73.25)$, which is greater than 1, means that soil is secondary pollution source of OCPs in air.

Occurrences and Phase Stability Relations of Minerals of the Cu-Fe-Sn-S System (Cu-Fe-Sn-S계(系) 광물(鑛物)의 산출상태(産出狀態)와 상안정관계(相安定關係))

  • Lee, Min Sung
    • Economic and Environmental Geology
    • /
    • v.13 no.4
    • /
    • pp.205-213
    • /
    • 1980
  • Stannite is mainly found in hypothermal ore deposits, whereas mawsonite and stannoidite occur characteristically with bornite and chalcopyrite in subvolcanic (xenothermal) ore deposits. Mawsonite always shows the replacement on the rims of stannoidite grains or along the grain boundaries of stannoidite, bornite and chalcopyrite. In the Tada mine, Japan, the following mineral assemblages of the Cu-Fe-Sn-S minerals were observed. 1) bornite-stannoidite; 2) stannoidite-chalcopyrite; 3) stannite-chalcopyrite; 4) bornite-mawsonite-stannoidite; 5) bornite-stannoidite-chalcopyrite; 6) mawsonite-stannoidite-chalcopyrite; 7) stannoidite-stannite-chalcopyrite; 8) bornite-mawsonite-stannoidite-chalcopyrite The heating and D.T.A. experimental results indicate that natural stannoidite containing 3 weight percent of zinc decomposes to bornite, stannite and chalcopyrite at above $500^{\circ}C$, whereas zinc-free synthetic stannoidite is stable up to $800^{\circ}C$. The stability temperature of zincian stannoidite depends on the zinc content. Mawsonite is stable at temperatures below $390^{\circ}C$ and decomposed to stannoidite, bornite and chalcopyrite above it. According to the sulfur fugacity determination by the electrum tarnish method the univariant assemblage of mawsonite, bornite, stannoidite and chalcopyrite requires a higher sulfur fugacity than that of bornite, stannoidite and chalcopyrite assemblage.

  • PDF

Sensitivity Analysis for a Level-III Multimedia Environmental Model: A Case Study for 2, 3, 7, 8-TCDD in Seoul (다매체환경거동모형 (level-III)의 민감도분석기법: 서울지역의 2, 3, 7, 8-TCDD 사례연구)

  • Kwon, Jung-Hwan;Lee, Dong-Soo
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.225-238
    • /
    • 2002
  • 유해물질의 거동에 대한 이해를 돕기 위해서 대도시지역을 대상으로 하여 fugacity를 이용한 level-III 다매체환경거동모형이 개발되었다. 이 모형에 의한 거동의 예측결과에 민감한 영향을 주는 입력과정과 변수들을 찾아내기 위하여 체계적으로 민감도분석을 수행할 수 있도록 하는 기법을 개발하고 사례연구로서 서울지역과 2, 3, 7, 8-TCDD을 대상으로 그 기법을 적용하였다. Sensitivity index에 의한 평가한 결과, 일정한 배출속도조건에서는 대기중의 바람속도, 그리고 대기에서 수체나 토양으로 전이되는 건식 및 습식 침적과정이 다매체거동에서 전체적으로 가장 중요한 과정인 것으로 나타났다. 또한 이들 거동과정 자체에 영향을 미치는 변수들에 대한 민감도 분석의 결과 건식침적의 경우 중력에 의한 입자들의 침강속도가, 습식침적의 경우 평균 강우속도가 대단히 중요한 변수임이 파악되었다. 물질의 물리화학적 특성 가운데에서는 z-값에 직접 영향을 주는 변수들, 즉, 헨리상수와 옥타놀-물 분배계수 등이 결과에 민감한 영향을 주는 것으로 나타났다. 이러한 사례연구는 본 연구에서 개발된 민감도분석기법이 유해물질의 다매체 거동모형을 개선하고 좀더 중요한 거동과정에 대한 이해를 넓히는데 효율적으로 사용될 수 있다는 것을 보여주고 있다.

Ore Mineralization of The Hadong Fe-Ti-bearing Ore Bodies in the Hadong-Sancheong Anorthosite Complexes (하동-산청 회장암체 내 부존하는 하동 함 철-티탄 광체의 광화작용)

  • Lee, In-Gyeong;Jun, Youngshik;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.50 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • The Hadong-Sancheong Proterozoic anorthosite complex occurs in the southwestern region of the Ryongnam massif. The geology of the area mainly consists of metamorphic rocks of the Jirisan metamorphic complex as basement rocks, charnockite, and the Hadong-Sancheong anorthosite, which are intruded by the Mesozoic igneous rocks. Hadong-Sancheong anorthosite complex is divided into the Sancheong anorthosite and the Hadong anorthosite which occur at north-southern and south area of the Jurassic syenite, respectively. The Hadong Fe-Ti-bearing dike-like ore bodies developed intermittently in the Hadong anorthosite with north-south direction and extend about 14 km. The Hadong Fe-Ti-bearing ore bodies consist mainly of magnetite and ilmenite with rutile, titanite, and minor amounts of sulfides(pyrrhotite, pyrite, chalcopyrite and sphalerite). The Hadong Fe-Ti-bearing ore bodies show a paragenetic sequence of magnetite-ilmenite ${\rightarrow}$ magnetite-ilmenite-pyrrhotite ${\rightarrow}$ ilmenite-pyrrhotite-rutile-titanite(and/or pyrite) ${\rightarrow}$ sulfides. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages indicate that early Fe-Ti-bearing ore mineralization in the ore bodies occurs at about $700^{\circ}C$ which corresponds to oxygen fugacity of about $10^{-11.8}{\sim}10^{-17.2}$ atm with the decrease tendency of sulfur fugacity to about $10^0$ atm as equilibrium of $Fe_3O_4-FeS$. The change of ore mineral assemblages from Fe-Ti-bearing minerals to sulfides in late ore mineralization of the ore bodies indicates that oxygen fugacity would have slightly decreased to ${\geq}10^{-20.2}$ atm and increased sulfur fugacity to ${\geq}10^0$ atm.

Copper Mineralization Around the Ohto Mountain in the Southeastern Part of Euiseong, Gyeongsangbug-Do, Republic of Korea (경북·의성 동남부 오토산 주변의 동광화작용)

  • Lee, Hyon Koo;Kim, Sang Jung;Yun, Hyesu;Song, Young Su;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.311-325
    • /
    • 1993
  • The Ohto and Tohyun copper mine which are located 4 km southeast of Euiseong, Gyeongsangbukdo, Republic of Korea show various common geologic and mineralogic features. Both copper deposits are of hydrothermal-vein types, and associated with fracture system developed during formation of the Geumseong-san caldera in late Cretaceous age. According to structures and mineral assemblages, the mineralization processes have progressed in four stages: three hypogene mineralization stages and one supergene stage. Three hypogene stages are 1) stage I forming $N5{\sim}20^{\circ}E$ veins in the Ohto mine, 2) stage II building $N5^{\circ}W{\sim}N5^{\circ}E$ veins in the Tohyun mine, and 3) stage ill bringing $N80^{\circ}E$ veins which crosscut veins of the stage II. The vein ores consist mainly of pyrite, arsenopyrite, galena and chalcopyrite, minor or trace amounts of magnetite, hematite, pyrrhotite, stannite, bournonite, boulangerite, stibnite, galenobismutite, native bismuth, marcasite, geothite and malachite. The main gangue minerals are quartz and calcite. Wallrock is altered by sericitization, chloritization, pyritization, carbonitization and argillization. Arsenic and copper contents in arsenopyrite increase from stage I to stage III (from 31.28 to 33043 atom.% As) and (from 0.04 to 0040 atom.% Co). Going from stage I to stage III Fe and Mn contents in sphalerite decreases from 12.56 to 0.44 wt.% and from 0.24 to 0.01 wt.%, respectively. The compositional data of arsenopyrite in the early stage I indicate a temperature of $420{\sim}365^{\circ}C$ and sulfur fugacity of $10^{-6.5}{\sim}10^{-8.3}$ atm. Chalcopyrite and pyrrhotite assemblage suggest that Middle stage I was deposited at below $334^{\circ}C$. The compositional data of arsenopyrite in early stage II suggest a temperature range of $425{\sim}390^{\circ}C$ and sulfur fugacity codition of $10^{-6.4}{\sim}10^{-7.3}$ atm. Based on fluid inclusion the Middle stage II was regarded as to be deposited at $420{\sim}337^{\circ}C$ (Chi et al., 1989). Referring composition of sphalerite and stannite middle-late stage II seem to be deposited around $246^{\circ}C$ and $10^{-16.5}$ atm. sulfur fugacity. The ${\delta}^{34}S$ values of sulfide minerals in the Stage I, II, III range from 4.9 to 7.6%0 and indicate igneous ore fluid origin. Based on differences in mineral assemblages, chemical composition and chemical environments of Ohto and Tohyun mine its mineralization are considered to be formed at diffent mineralization ages and by different ore fluids.

  • PDF