• Title/Summary/Keyword: Fuel-saving

Search Result 280, Processing Time 0.029 seconds

ENERGY SAVING EFFECT OF INTELLIGENT EXCAVATING SYSTEM

  • Jeonghwan Kim;Seungwoo Pi;Jongwon Seo
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.209-212
    • /
    • 2013
  • Global warming and climate change is now an important issue in every industry. Construction is not an exception. Greenhouse Gases (GHG) are emitted by construction activities such as fuel usage in construction equipment and so on. In light of this, Intelligent Excavating System (IES), which is a robotic excavator with site modeling capability, is developed by a research consortium formed in Korea to improve productivity, quality, and safety of the traditional earthwork. This paper presents that energy saving effect of IES in comparison to traditional method. Through this review, we propose a research strategy to achieve carbon reduction goals in construction industry.

  • PDF

A study of the economic effects of weather and climate information on marine logistics (해상운송업의 기상기후정보 경제적 효과에 관한 연구)

  • Lho, Sangwhan;Lim, Dongsoon
    • Environmental and Resource Economics Review
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Weather seems to influence industries in a variety of ways. On a day-to-day basis, it is the most volatile external factor influencing consumer and market behavior. And, because weather is constantly changing, industries must deal with a continuously shifting array of opportunities and risks. This study aims to examine how climate and weather changes and information, as external environmental factors, have affected the Korean industries, particularly marine shipping and logistics. To find out the economic value of marine weather information, we use measurable results of VVOS(Vessel and Voyage Optimization Services) in the ocean shipping, which the marine weather software tool can save fuel costs up to 4%. When the fuel saving is same as VVOS's performance, the saving of Korean flag ship is estimated about 62 billion won and the saving of total flag ship is estimated about 519 billion won. However, coastal shipping companies have been struggling with the heavy weather factors, such as wave height, wave period and wind. Major findings are that wind and wave height have a significant negative effect on cargo transport, while wave period has a significant positive effect on cargo transport. And to conclude, when we use efficiently the marine weather information, we can increase cargo transport and save fuel costs etc.

A Study on the Evaluation of Cabin Thermal Environment and Marine Fuels for Fuel Saving in Summer According to the Improvement of Air Conditioning System - The Case of Training Ship SAENURI - (공조시스템 개선에 따른 하절기 선실 온열환경 평가 및 유류절감에 관한 연구 - 실습선 새누리호를 중심으로 -)

  • Han, Seung-Hun;Kim, Hong-Ryel
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.653-662
    • /
    • 2014
  • In this study, Mokpo national maritime university Training ship Centralizes Air Conditioning System was upgraded by installing onboard an Air-cooled Air conditioner. This resulted in the improvement of the performance and operation. This study compared refrigeration performance to former equipment and improving one. And through the actual measurement study about the cabin thermal environment, it will be used as basic data for marine air conditioning design and plan in the future. At same climate condition, when the Centralized Air Conditioning System and an improved air conditioning system operated, cabin temperature was at $24{\sim}28^{\circ}C$, humidity was 55~75 % as comfortable condition, Generator load measurement showed a saving of 48KW in the average load and 8 % in the full load factor. This also resulted in a saving of daily fuel oil consumption(FOC) at around 222 [${\ell}/day$] average. On the other hand, one cadet cabin(Cadet No.21) indicated a higher temperature due to heat transmission of engine room. It found us not to consider installing additional diffuser to reduce the heat transmission.

Development of Semi-basement Type Greenhouse Model for Energy Saving

  • Kim, Seoung Hee;Joen, Jong Gil;Kwon, Jin Kyeong;Kim, Hyung Kweon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.328-336
    • /
    • 2016
  • Purpose: The heat culture areas of greenhouses have been continuously increasing. In the face of international oil price fluctuations, development of energy saving technologies is becoming essential. To save energy, auxiliary heat source and thermal insulation technologies are being developed, but they lack cost-efficiency. The present study was conducted to save energy by developing a conceptually new semi-basement type greenhouse. Methods: A semi-basement type greenhouse, was designed and constructed in the form of a three quarter greenhouse as a basic structure, which is an advantageous structure to inflow sunlight. To evaluate the performance of the developed greenhouse, a similar structured general greenhouse was installed as a control plot, and heating tests were conducted under the same crop growth conditions. Results: Although shadows appeared during the winter in the semi-basement type greenhouse due to the underground drop, the results of crop growth tests indicated that there were no differences in crop growth and development between the semi-basement type greenhouse and the control greenhouse, indicating that the shadows did not affect the crop up to the height of the crop growing point. The amount of fuel used for heating from January to March was almost the same between the two greenhouses for tests. The heating load coefficients of the experimental greenhouses were calculated as $3.1kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the semi-basement type greenhouse and $2.9kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the control greenhouse. Since the value is lower than the double layer PE (polyethylene) film greenhouse value of $3.5kcal/m^2{\cdot}^{\circ}C{\cdot}h$ from a previous study, Tthe semi-basement type greenhouse seemed to have energy saving effects. Conclusions: The semi-basement type greenhouse could be operated with the same fuel consumption as general greenhouses, even though its underground portion resulted in a larger volume, indicating positive effects on energy saving and space utilization. It was identified that the heat losses could be reduced by installing a thermal curtain of multi-layered materials for heat insulation inside the greenhouse for the cultivation of horticultural products by installing thermal curtain of multi-layered materials for heat insulation inside the greenhouse, it was identified that the heat losses could be reduced.

The effects and problems for fuel saving on new type of automotive engine oil (연비절감을 위한 자동차엔진유의 최근동향과 그 문제점)

  • 권영길
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.8-13
    • /
    • 1981
  • 종래 자동차용 엔진유에 요구되었던 주요기능으로서는 마찰부위에서 발생되는 마찰저항이나 마 모를 감소시키는데에 국한하여 연구개발되어 왔었지만 12973년의 석유의기를 계기로 하여 이와 같은 기능외에도 소비에너지를 최소화 할려는 노력의 일환으로서 연비절약형의 엔진유는 물론 내구서어이 양호한 롱라이프(long life)유가 등장되었을뿐만 아니라 날로 심각해져가고 있는 자 동차배기가스에 의한 대기오염과도 적합성을 고겨한 새로운 기능의 엔진유가 개발됨에 따라 이와 관련하여 자동차엔지유를 통해본 연료비절감효과와 그 문제점을 검토해 보고자 한다.

  • PDF

COMBUSTION CHARACTERISTICS OF WASTE-PYROLYSIS GASES IN AN INTERNAL COMBUSTION ENGINE

  • Shudo, T.;Nagano, T.;Kobayashi, M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Wastes such as shredder dust of disposed vehicles can be decomposed into low calorific flammable gases by Pyrolysis gasification. A stationary electric Power generation using an internal combustion engine fuelled with the waste-pyrolysis gas is an effective way to ease both waste management and energy saving issues. The waste-pyrolysis gas mainly consists of H$_2$, CO, $CO_2$ and $N_2$. The composition and heating value of the gas generated depend on the conversion process and the property of the initial waste. This research analyzed the characteristics of the combustion and the exhaust emissions in a premixed charge spark ignition engine fuelled with several kinds of model gases, which were selected to simulate the pyrolysis-gases of automobile shredder dusts. The influences of the heating value and composition of the fuel were analyzed parametrically. Furthermore, optical analyses of the combustion flame were made to study the influence of the fuel's inert gas on the flame propagation.

A study on the reduction of fuel consumption for fish farm during winter season (월동시 양식장의 연료 절감 대책)

  • Park, Jong-Un;Han, Kyu-Il
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.7 no.1
    • /
    • pp.31-43
    • /
    • 1995
  • For the fuel saving in the fish farm, the heat transfer performances of various tubes, XL-tube, copper-tube, copper-Nikel-tube and Al-brass-tube, were compared. The XL-tube, which is most commonly used for heating water, showed the poorest heater transfer performance, while the Al-Brass tube shows the best performance. As far as average temperature difference of four tubes concerns, XL-tube is $3.34^{\circ}C$, Copper tube is $10.34^{\circ}C$, Copper-Nikel tube is $11.3^{\circ}C$, Al-Brass-tube is $12^{\circ}C$, The best heat transfer performance of Al-Brass tube results from the enhancement of heat transfer coefficient caused by fin effect and good conductivity of the material.

  • PDF

A Study on the Hydraulic Pump/Motor Control in the Flywheel Hybrid Vehicle

  • Oh, Boem-Sueng;Ahn, Kyoung-Kwan;Cho, Yong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.307-311
    • /
    • 2004
  • In this study, a novel hybrid vehicle is proposed. The vehicle has a flywheel-engine hybrid system. Flywheels are more effective as energy charge systems than electric batteries in a respect of output power density. However, transmissions to effectively drive flywheels are very complex systems such as CVTs (Continuously Variable Transmissions). In the proposed hybrid vehicle, Constant Pressure System is employed, which is hydraulic power transmission. Using Constant Pressure Systems, hydraulic CVTs are easily realized with variable displacement pumps/motors. In this paper, firstly, the proposed flywheel hybrid vehicle making use of Constant Pressure System is described. Secondly, fuel consumption characteristics of the flywheel hybrid vehicle are experimentally examined with the stationary test facility, which employs a flywheel as a load emulating vehicle inertia. Finally, the experimental results and discussions are described. Fuel consumption of 26km/L is expected for 10 mode driving schedule with vehicle mass of 1500kg.

  • PDF

An Analysis Study for Thermal Design of ISG (Integrated Starter & Generator) for Hybrid Electric Vehicle (하이브리드 차량용 ISG(Integrated Starter Generator)의 방열 설계를 위한 해석적 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.120-127
    • /
    • 2013
  • Hybrid electric vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. Electrification of automobiles is indispensable for entering into global market because of enhanced environment restriction. ISG (Integrated Starter & Generator) system is one of main electric parts and can improve fuel efficiency more than other components by using Idle Stop & Go function and regenerative braking system. However, if ISG motor and inverter work under the continuously high load condition, it will make them the decrease of performance and durability. So the ISG motor and inverter need to properly design the cooling system of them. In this study, we suggested the enhancement points by modifying the thermal design of ISG motor and then confirmed the improvement of the cooling performance.

Design for the multistage sheet metal forming of wheel disks by Design of Experiment (실험계획법을 이용한 휠 디스크의 다단판재성형 공정 설계)

  • 이명균;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.278-282
    • /
    • 2003
  • There is a strong industrial demands for the development of light-vehicle to improve fuel efficiency. It is more effective to reduce weight of the parts directly driven by an automobile engine. So the saving in weight of wheels which is operated by an automobile engine improve fuel efficiency more than other parts. There are many step of sheet metal forming in fabricating automotive wheel, so that it is difficult to design process and tools of multi-stage stamping. Traditionally, design process and tools have depended on the experience of skilled workers and it has done by trial and error methods. However, it needs too much costs and time. Taguchi methods has an advantage of the number of required experiments and reliability compared with trial and error method. In this study, Taguchi methods and response surface methods are applied to design process and tools of automotive wheel. As a result, the principal variables are selected and process conditions are optimized.

  • PDF