• 제목/요약/키워드: Fuel-air unmixedness

검색결과 5건 처리시간 0.023초

연료와 공기의 혼합정도가 모델 가스터빈 연소기내의 압력변동에 미치는 영향 (Effect of the Unmixedness of Fuel and Air on the Pressure Fluctuations in a Model Gas Turbine Combustor)

  • 홍정구;신현동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3264-3269
    • /
    • 2007
  • Combustion instability is a serious obstacle for the lean premixed combustion of gas turbines, and can even cause fatal damage to the combustor and the entire system. Thus, improved understanding of the mechanisms of combustion instability is necessary for designing and operating gas turbine combustors. In this study, in order to understand the instability phenomena, an experimental study was conducted in a rearwardstep dump combustor with LPG and air. The fluctuations of pressure and heat release were measured by piezoelectric pressure sensor and High speed Intensified Charge Coupled Device (ICCD) camera respectively. Various types of combustion modes occurred in accordance with the equivalence ratio and the fuel supplying conditions. The unmixedness of the fuel and air can be controlled by changing the mixing distance ($L_{fuel}$). It is found that the unmixedness of the fuel and air affects the characteristics of flame behavior and pressure fluctuations in a lean premixed flame.

  • PDF

연료-공기 비혼합도가 희박예혼합 연소 특성에 미치는 영향 (Effects of Fuel-Air Unmixedness on Lean Premixed Combustion Characteristics)

  • 김대현;이종호;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.133-139
    • /
    • 2002
  • The lean premixed technique has been proven very efficient in reducing NOx emissions from gas turbine combustors. However combustion instability is susceptible to occur in lean premixed combustor. So laboratory-scale dump combustor was used to understanding the underlying mechanisms causing combustion instabilities. In this study, tests were conducted at atmospheric pressure and inlet air was up to $360^{\circ}C$ with natural gas. The observed instability was a longitudinal mode with a frequency of ${\sim}341.8Hz$. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various equivalence ratio. Combustion instability was observed to occur at higher value of equivalence ratio(>0.69). This study was performed to investigate the effects of equivalence ratio and fuel split measuring NOx and acoustic wave. The results reveal the effect of fuel-air unmixedness on lean premixed combustor.

  • PDF

혼합기 공급방식에 따른 덤프연소기의 연소 불안정성에 관한 실험적 연구 (A Experimental Study on the Instability of Combustion in a Dump Combustor with Respect to Fuel and Air Mixing and Flow Conditions)

  • 홍정구;이민철;이은도;오광철;신현동
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.963-970
    • /
    • 2005
  • The combustion instability of turbulent flames is the most important problem of the gas turbine combustor. Thus improved understanding of mechanisms of combustion instability is necessary for the design and operation of gas turbine combustors. In this study, the cause of the combustion instability in a rearward-step dump combustor was investigated with respect to the fuel flow modulation; choked fuel flow, unchoked fuel flow and fully premixed mixture flow. We observed various types of combustion instabilities with respect to the change of equivalence ratio, fuel flow conditions and fuel injection location. Particularly in the unchoked fuel flow condition, it was found that the oscillation time of combustion instability is strongly related to the convection time of the fuel and that the pressure fluctuation in a lab-scale combustor is highly related to the vortex and the equivalence ratio fluctuations due to fuel flow modulation and unmixedness of the fuel and air.

모형연소기에서 연료-공기의 혼합정도 및 당량비가 NOx 배출과 열 방출량에 미치는 영향에 대한 연구 (Effect of the Degree of Fuel-Air Mixing and Equivalence Ratio on the NOx Emission and Heat Release in a Dump Combustor)

  • 조봉국;최도욱;김규보;장영준;송주헌;전충환
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.658-665
    • /
    • 2009
  • Lean premixed combustors are used for significant NOx reduction which one of issues in current gas turbine combustor. This study was investigated to estimate the effects of the unmixedness of fuel-air, equivalence ratio on the instability mechanism, NOx emission and combustion oscillation in a lean premixed combustor. The experiments were conducted in a dump combustor at atmospheric pressure conditions using methane as fuel. The swirler angle was $45^{\circ}$, the degrees of fuel-air mixing were 0, 50 and 100 and inlet temperature was 650K. The equivalence ratio was ranging from 0.5 to 0.8. This paper shows that NOx emission was increased when the degree of fuel-air mixing is increased in same equivalence ratio and when equivalence ratio is increased. And the range of the combustion instability was enlarged as a function of increasing of the degree of fuel-air mixing.

스월 예혼합 버너의 연소 특성 및 NO 배출에 관한 수치적 연구 (Numerical Study of Combustion Characteristics and NO Emission in Swirl Premixed Burner)

  • 백광민;조천현;조주형;김한석;손채훈
    • 대한기계학회논문집B
    • /
    • 제37권10호
    • /
    • pp.911-918
    • /
    • 2013
  • Double cone 버너를 장착한 가스터빈용 EV (Environmental Vortex)버너의 연소 특성과 NO 배출 특성을 수치적으로 조사하였다. NO 배출 저감을 위해 연료와 공기의 혼합 특성을 예측하였다. 혼합도와 NO 배출과의 상관관계를 예측하기 위해 메탄 1단계 화학반응식과 2단계 반응식에 적용하여 연소 해석을 수행하였다. 1단계 반응식을 적용한 결과, 혼합도가 저하된 모델에서 NO 배출량이 약 2% 증가하였으며, 혼합도가 향상된 모델의 경우 cone 상부에서 과다한 고온의 화염 영역이 형성되어 NO가 약 169%나 증가하였다. 2단계 반응식의 경우 첫 번째 모델에서 약 3% NO 배출량이 증가하였으며, 두 번째 모델에서 cone 내부의 고온 영역이 형성되지 않고 NO가 약 5% 감소하였다. 이 결과는, 혼합 특성이 저감된 모델에서 NO가 약 63% 증가하였고, 혼합 특성이 향상된 모델에서 NO가 약 11% 감소한 실험결과와 잘 부합하였다. 정량적인 오차가 있음에도, NO 배출의 정성적 경향성이 유사하므로 2단계 반응식을 적용한 수치해석을 통해 설계 변경 방안을 제시하는 것은 타당할 것으로 판단된다.