• Title/Summary/Keyword: Fuel spray

Search Result 1,011, Processing Time 0.024 seconds

Investigation on Injection Rate and Microscopic Spray Characteristics of Fine Bubble Diesel Fuel (미세버블 디젤 연료의 분사율과 미시적 분무특성에 대한 연구)

  • Chen, Hai-Lun;Lee, Seungwoo;Kim, Kihyun
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2020
  • This study aims to investigate injection rate and microscopic spray characteristics of diesel fuel containing fine air bubble (FBD). fine bubble was generated by cavitation theory using bubble generator. Fuel spray was injected into constant volume chamber and visualized by high speed camera. The injection rate data was acquired with bosch tube method. Injection rate of finebubble diesel was very similar with that of diesel. It showed slightly faster injection start by 5 ㎲ attributed to the low viscosity characteristics. In microscopic spray visualization, fine bubble diesel spray showed unsymmetric spray shape compared with diesel spray. It also showed very vigorous spray atomization performance during initial spray development. Improved atomization was also attributed to the low viscosity and surface tension of finebubble diesel fuel.

An Experimental Study on the Spray Characteristics of a Dual-Orifice Type Swirl Injector at Low Fuel Temperatures

  • Park, Byung-Sung;Kim, Ho-Young;Kim, Yongchan;Chung, Jin-Taek
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1187-1195
    • /
    • 2004
  • The objective of this study is to investigate the effects of fuel temperature on the spray characteristics of a dual-orifice type swirl injector used in a gas turbine. The major parameters affecting spray characteristics are fuel temperature and injection pressure entering into the injector. In this study, the spray characteristics of a dual-orifice type swirl injector are investigated by varying fuel temperature from - 30$^{\circ}C$ to 120$^{\circ}C$ and injection pressure from 0.29 to 0.69 ㎫. Two kinds of fuel having different surface tension and viscosity are chosen as atomizing fluids. As a result, injection instability occurs in the low fuel temperature range due to icing phenomenon and fuel property change with a decrease of fuel temperature. As the injection pressure increases, the range of kinematic viscosity for stable atomization becomes wider. The properties controlling the SMD of spray is substantially different according to the fuel temperature range.

An experimental study on initial dispersion process of diesel fuel spray (디젤유분무의 초기분산과정에 관한 실험적 연구)

  • 허종철;구자왕;양옥룡
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.42-49
    • /
    • 1991
  • This study is to investigate the dispersion characteristics of diesel fuel spray in the initial stage of the beginning of the injection under the condition of room temperature and atmospheric pressure. It is difficult to analyse that the diesel fuel spray in diesel engine has unsteady intermittent spray. So author installed a fuel accumulator and an electromagnetic controller in order to keep the constant fuel injection rate with the time variation. With this modified fuel injection system, spray tip penetration, spray angle and initial spray development process are investigated by instantaneous photographic method. The results obtained in this study are as follows : 1) The initial shape of injection of diesel fuel spray shows the form of non-disintegrated intact core, but the formation of ligaments increasingly grows as the time increases. It can also be shown that fine droplets become disintegrated out from the ligaments. 2) The slope of spray tip penetration was changed to two different tendencies with time. The transition point of the slope is shown at the time of around between 0.09 msec and 0.4 msec from the beginning of injection. This is transition time from non-disintegrated intact core to formation of ligaments.

  • PDF

Atomization and Evaporation Characteristics of DME Fuel for the Application of HCCI Diesel Engine (HCCI 디젤엔진 연료적용을 위한 DME 연료 미립화 및 증발특성)

  • Chon, Mun-Soo;Hwang, Yong-Ha;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.140-146
    • /
    • 2006
  • The objective of this work is to analyze the atomization and evaporation characteristics of dimethyl ether(DME) fuel for the application of HCCI diesel engine. In order to investigate the spray behavior of DME fuel, the macroscopic and microscopic characteristics were investigated in terms of spray development, spray tip penetration, impingement time, SMD, and axial mean velocity under the various injection timing and ambient conditions. For the illumination of spray, the spray visualization system was composed of a Nd:YAG laser and an ICCD camera and laser-sheet method was used. The atomization characteristics of DME fuel are analyzed by using phase Doppler particle analyzer (PDPA) system It was reveal that the spray development of DME is slower and rapidly disappeared as elapsed time after start of injection at the same injection duration. The impingement timing of diesel fuel was fester than that of DME fuel. The comparison of spray atomization characteristics in both fuels shows that diesel fuel has a large SMD value that DME.

  • PDF

The basic study of spray characteristics and optimal fuel injection for high pressure injector in homogeneous charge compression ignition engine (예혼합 압축 착화 엔진용 고압 인젝터의 분무특성과 분사조건 최적화에 관한 기초 연구)

  • Ryu, Jea-Duk;Kim, Hyung-Min;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • The purpose of this study was to investigate the fuel spray characteristics that made most important at an homogeneous air fuel mixture, in a common rail direct injection type HCCI engine. As a study conducted relation which a back pressure and injection pressure are influenced to air fuel mixture characteristics, we tried to offer date even through we select suitable to a HCCI engine running condition of the fuel injection condition. To accomplish the study, to measure a injection rate of common rail type injector and to visualize and simulate a fuel spray was conducted. From the result of injection rate, a common rail injector was confirmed to appear a initial delay of 0.3msec and a latter period delay of 0.7msec. Therefore, real injection duration was determined by about 0.5msec increasing. From the result of fuel spray, the spray penetration was proportional to 1/4 exponent of atmosphere pressure. An experimental equation was deduced from the spray penetration of spray visualization experiment and the relation of injection duration and penetration was estimated in HCCI engine using an experimental equation.

  • PDF

A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel (Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구)

  • Yang, Ji Woong;Jung, Jae Hoon;Lim, Ock Taeck
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

A Study on Spray Characteristics of Biodiesel Derived from Waste Cooking Oil (폐식용유 바이오디젤 연료의 분무특성에 관한 연구)

  • Ahn, Sangyeon;Kim, Woong Il;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.182-187
    • /
    • 2013
  • This study was performed to investigate the effect of biodiesel derived from waste cooking oil on the spray behavior and macroscopic spray characteristics. To analyze quantitative characteristics of test fuels, injection quantity was measured at various injection pressures and the spray images of injected fuels in the pressurized chamber were obtained by using a high speed camera and image analysis system. Based on the measured spray images, the spray tip penetration and spray cone angle were investigated at various energizing timings and injection pressures. In this work, the experimental results showed that the injection quantity of waste cooking biodiesel indicated the higher quantities than diesel at high injection pressure. As the injection pressure was increased, the spray tip penetrations of biodiesel were higher value than diesel. The difference of penetration between biodiesel and conventional diesel fuel was reduced in accordance with the increase of injection pressure. Also, the spray angles of diesel were larger than that of biodiesel because diesel fuel has lower viscosity than biodiesel. In addition, the spray evolution processes of biodiesel fuel at various injection pressures and the elapsed time after the injection were compared to the conventional diesel fuel.

Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels (디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구)

  • Park, Sewon;Park, Su Han;Park, Sungwook;Chon, Mun Soo;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.

Spray Characteristics of Dimethyl Ether(DME) Fuel Compared to Various Diesel Fuels

  • Lee, Seang-Wock;Kim, Duk-Sang;Cho, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.65-72
    • /
    • 2008
  • It is recognized that alternative fuel such as dimethyl ether (DME) has better combustion polluting characteristics than diesel fuel, even though the cetane number of DME is almost the same as that of diesel. Characteristics of DME spray were observed experimentally under various ambient conditions using a constant volume chamber and a common-rail injection system. N-dodecane and LPG fuel sprays were also observed under same conditions of DME spray. Using spray images from backlight scattering and Mie scattering, characteristics of fuel sprays such as penetration and spray volume were visualized and quantitatively measured. The measurements showed that the penetration of early period decreased remarkably, because evaporation of alternative fuels became prosperous by the influence of flash boiling phenomenon under the condition of the low temperature and pressure compared with n-dodecane. The penetration of DME and LPG spray received the influence of temperature more largely in comparison with low density, because the specific surface area increased by atomizing in high density.

  • PDF

Analysis of Spray Characteristic for 3-Component Mixed Fuel (3 성분 혼합연료의 분무특성 해명)

  • Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.589-595
    • /
    • 2009
  • The instability wave formed near nozzle region grows to vortex with large scale in downstream region of spray. It plays an important role in the fuel-air mixing, combustion process and engine exhaust emissions in direct injection diesel engine. The objective of this study is to analyze effect of variant parameters (injection pressure, ambient gas density, etc.) and fuel properties on spray instability near nozzle region. Spray structure near nozzle region was investigated using a magnification photograph. A pulsed Nd-YAG laser was used as a light source, and image was taken by CCD camera. The following conclusions are drawn from this experimental analysis. In low ambient density, the effect of fuel properties on spray instability near nozzle region is dominant. In high ambient density, the effect of ambient gas on spray instability near nozzle region is dominant. High jet velocity has strong influence on spray instability.