• Title/Summary/Keyword: Fuel side

Search Result 346, Processing Time 0.024 seconds

In-Cylinder Phenomena in a Swirl Type GDI Engine (스월형 GDI 엔진의 연소실내 현상 연구)

  • 김기성;박상규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.75-90
    • /
    • 2001
  • For the purpose of helping development of a GDI(Gasoline Direct Injection) engine, the in-cylinder phenomena, such as the spray behaviors and fuel distributions, unburned fuel, and flame characteristics were investigated in a single cylinder GDI engine. The GDI engine was equipped with a swirl type electronic injector and SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurements of the fuel distributions. The effects of the injector specifications, such as the spray cone angle and the offset angle on the fuel distributions and combustion characteristics were investigated. As a result, it was found that the injected fuel spray collided with the bottom of the bowl and moved upward along the exhaust side wall of the piston bowl. This fuel vapor played a important role in the instance of spark ignition. The injector specifications has a great influence on the flame characteristics.

  • PDF

Fabrication and Characteristics of Supported Type Planar Solid Oxide Fuel Cell By Co-firing Process (공소결법에 의해 제조된 지지체식 평판형 고체산화물 연료전지 성능 특성)

  • Song, Rak-Hyun
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.160-168
    • /
    • 2003
  • The co-firing processes for the supported type planar solid oxide fuel cell were investigated. A flat cell of $7.7${\times}$10.8\textrm{cm}^2$ was fabricated successfully by the co-firing process, in which green films were co-sintered in the forms of two layers of anode/electrolyte or of three layers of anode/electrolyte/cathode with gas distributor. A co-fired cell of two layers yielded a power of 200 ㎽/$\textrm{cm}^2$ at 608 ㎷. Its performance loss was mainly due to iR drop in the anodic gas distributor, which was attributed to poor contact between anodic gas distributor and current collector. The performance in the co-fired cell of three layers was much lower than that of two layers, which resulted from the large iR drop and activation overvoltage at the cathodic side. In the co-fired cell of two layers, the impedance analysis indicated that the performance decay during cell operation is due to both anode overvoltage and iR drop at anode side. Also the electrode reaction of the co-fired two layers' cell is considered to be controlled by activation overvoltage within the low current of 50 ㎃.

In-Cylinder Fuel Distribution Measurements in a Lean Burn Engine (희박연소 엔진의 연소실내 연료분포 특성 연구)

  • Kim, K.S.;Lee, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.19-32
    • /
    • 1999
  • The present study investigated the forms and behaviors of fuel during intake and compression process, and the initial flame stability in a lean burn engine modified as a single cylinder engine equipped with quartz windows for visualization. PLIF(Planar Laser Induced Fluorescence) method with KrF Excimer laser was used for measuring the fuel distributions. The principal design concept of the lean burn nin in this study is the axial stratification in the fuel distribution via fuel injection during intake process and different shapes of intake ports; helical and straight. The experiments showed that fuel flowed in as a vapor state in the early part of intake process and lots of this mixture mated down along the intake valve side cylinder wall, but in the latter part, a lot of fuel flowed in as a liquid state and this fuel stayed in the upper part of cylinder, after that the dense fuel cloud moved upward in the early of part compression process. It became clear that the fuel flowed in via straight port had a important role in the axial fuel stratification.

  • PDF

Effects of Shut-down Process on Degradation of Polymer Electrolyte Membrane Fuel Cells I. Effects of Hydrogen Removal on the Degradation (운전 정지 시 보관방법이 고분자 전해질 연료전지의 열화에 미치는 영향 I. 잔류 수소 제거 방법의 영향)

  • Lim, Sang-Jin;Cho, Eun-Ae;Lee, Sang-Yeop;Kim, Hyoung-Juhn;Lim, Tae-Hoon;Lee, Kwan-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.118-123
    • /
    • 2006
  • Degradation of polymer electrolyte membrane fuel cell (PEMFC) that is facilitated by on/off cycles is one of the most important issues for commercialization of fuel cell vehicles. When a PEMFC stack is shut down, residual hydrogen and induce high voltage equivalent to open circuit voltage to the cathode side that might cause sintering of Pt catalyst and facilitate formation of hydrogen peroxide at the anode side that might decompose $Nafionc\'{A}$ membrane. In this study, degradation of PEMFC exposed to repetitive on/off cycles was investigated by measuring i-V characteristics, ac impedance, cyclic voltammograms, gas leak, cross-sectional SEM images, and TEM images. To prevent degradation of PEMFC caused by the residual gases, hydrogen was removed from anode gas channel by gas-purging and by using a dummy resistance, that were found to be a very effective method.

Preliminary study on the thermal-mechanical performance of the U3Si2/Al dispersion fuel plate under normal conditions

  • Yang, Guangliang;Liao, Hailong;Ding, Tao;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3723-3740
    • /
    • 2021
  • The harsh conditions in the reactor affect the thermal and mechanical performance of the fuel plate heavily. Some in-pile behaviors, like fission-induced swelling, can cause a large deformation of fuel plate at very high burnup, which may even disturb the flow of coolant. In this research, the emphasis is put on the thermal expansion, fission-induced swelling, interaction layer (IL) growth, creep of the fuel meat, and plasticity of the cladding for the U3Si2/Al dispersion fuel plate. A detailed model of the fuel meat swelling is developed. Taking these in-pile behaviors into consideration, the three-dimensional large deformation incremental constitutive relations and stress update algorithms have been developed to study its thermal-mechanical performance under normal conditions using Abaqus. Results have shown that IL can effectively decrease the thermal conductivity of fuel meat. The high Mises stress region mainly locates at the interface between fuel meat and cladding, especially around the side edge of the interface. With irradiation time increasing, the stress in the fuel plate gets larger resulting from the growth of fuel meat swelling but then decreases under the effect of creep deformation. For the cladding, plasticity deformation does not occur within the irradiation time.

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

Unsteady Response of Counterflow Nonpremixed Flames Interacting with a Vortex (와동과 상호작용하는 대향류 비예혼합화염의 비정상 응답특성)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2-Air$ counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman#s detailed reaction mechanism are adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. The results show that fuel-side and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished at much larger SDR than steady flame. It is also found that air-side vortex extinguishes a flame more rapidly than fuel-side vortex. The unsteady effect induced by flame-vortex interaction does not lead to a transient OH overshoot of the maximum steady concentration observed in experiment, while $HO_2$ radical increases more than the maximum steady concentration with increasing SDR. In addition, it is seen that NO and $NO_2$ are not sensitive to the unsteady variation of SDR.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyu-Bok;Kim, Jong-Gyu;Lim, Byoung-Jik;Kim, Mun-Ki;Kang, Dong-Hyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.807-812
    • /
    • 2011
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyubok;Kim, Jong-Gyu;Lim, Byoungjik;Kim, Munki;Kang, Donghyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

Comparing the performance of two hybrid deterministic/Monte Carlo transport codes in shielding calculations of a spent fuel storage cask

  • Lai, Po-Chen;Huang, Yu-Shiang;Sheu, Rong-Jiun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2018-2025
    • /
    • 2019
  • This study systematically compared two hybrid deterministic/Monte Carlo transport codes, ADVANTG/MCNP and MAVRIC, in solving a difficult shielding problem for a real-world spent fuel storage cask. Both hybrid codes were developed based on the consistent adjoint driven importance sampling (CADIS) methodology but with different implementations. The dose rate distributions on the cask surface were of primary interest and their predicted results were compared with each other and with a straightforward MCNP calculation as a baseline case. Forward-Weighted CADIS was applied for optimization toward uniform statistical uncertainties for all tallies on the cask surface. Both ADVANTG/MCNP and MAVRIC achieved substantial improvements in overall computational efficiencies, especially for gamma-ray transport. Compared with the continuous-energy ADVANTG/MCNP calculations, the coarse-group MAVRIC calculations underestimated the neutron dose rates on the cask's side surface by an approximate factor of two and slightly overestimated the dose rates on the cask's top and side surfaces for fuel gamma and hardware gamma sources because of the impact of multigroup approximation. The fine-group MAVRIC calculations improved to a certain extent and the addition of continuous-energy treatment to the Monte Carlo code in the latest MAVRIC sequence greatly reduced these discrepancies. For the two continuous-energy calculations of ADVANTG/MCNP and MAVRIC, a remaining difference of approximately 30% between the neutron dose rates on the cask's side surface resulted from inconsistent use of thermal scattering treatment of hydrogen in concrete.