• Title/Summary/Keyword: Fuel reforming

Search Result 308, Processing Time 0.03 seconds

A comparison between fuel cells and other alternatives for marine electric power generation

  • Welaya, Yousri M.A.;Gohary, M. Morsy El;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.141-149
    • /
    • 2011
  • The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last halfcentury has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.

Investigation of the coaxial cylindrical steam reformer for fuel cell applications (연료전지 적용을 위한 동축원통형 수증기 개질기의 연구)

  • Park, Joon-Geun;Lee, Shin-Ku;Bae, Joong-Myeon;Kime, Myoung-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.113-116
    • /
    • 2007
  • Performance of a steam reformer can be improved by using a coaxial cylindrical reactor, because the design can enhance the heat transfer for the steam reforming reaction, which is the one of main rate-determining steps of overall reactions. The objective of this study is to investigate the coaxial cylindrical reactor numerically. Pseudo-homogeneous model and one medium approach are incorporated for the chemical reactions, and models are validated with experimental results. The catalyst of the coaxial cylindrical reactor is 67% for one of the cylindrical reactor, but fuel conversion of the coaxial cylindrical reactor is increased by 10%. Heat flux profiles are investigated by modified Nusselt number and heat flux which is transported from the product gas to the catalyst bed affecting performance of the steam reformer.

  • PDF

Investigation of the Water Gas Shift from Reforming Gas for CO Removal (일산화탄소 저감을 위한 개질가스의 전이반응 연구)

  • Kim, Seong-Cheon;Youn, Moon-Jung;Chun, Young-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.855-859
    • /
    • 2007
  • Hydrogen as an energy carrier in fuel cell offers perhaps the largest potential benefits of reduced emissions of pollutants and greenhouse gases. The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. Reduction of carbon monoxide to an acceptable level of 10ppm involves high temperature and low temperature water gas shift (WGS), followed by selective oxidation of residual carbon monoxide. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 5000 ppm. In the water gas shift operation, gas emerges from the reformer is taken through a high temperature shift (HTS) catalyst to reduce the CO concentration to about $2{\sim}4%$ followed to about 5000 ppm via a low temperature shift (LTS) catalyst.

The Effect of Proton Conductivity of SPEEK Composite Membrane with Organic Compounds for DMFC

  • You, S.K.;Kim, H.J.;Shin, H.S.;Kim, J.S.;Choi, W.K.;Park, S.G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.167-172
    • /
    • 2009
  • Direct methanol fuel cells(DMFCs) are receiving significant attention in the portable power source and electric vehicular transportation because of its high energy efficiency as liquid fuel, low cost, and no requirement of fuel reforming process. In this study, we synthesized the Sulfonated poly(ether ether ketone) (SPEEK) to evaluate the possibility of use as a proton exchange membrane for DMFC. And poly(vinylidienedifluoride) (PVDF) was used to increase proton conductivity in SPEEK and simultaneously to prevent methanol transport through the cross linked membrane. Furthermore, in order to improve the electrical composite properties for DMFC applications.

A Study on the Dynamic Performance Behavior of Solid Oxide Fuel Cells with Stepwise Load Changes (갑작스런 부하 변동에 따른 고체산화물 연료전지의 동적 성능 거동 특성에 관한 연구)

  • Sohn Jeong Lak;Ro Sung Tack;Yang Jin Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.477-484
    • /
    • 2005
  • Model fer the dynamic simulation of dynamic behaviors of a solid oxide fuel cell (SOFC) is provided. This model is based upon (1) coupled mass and heat transfer characteristics and (2) important chemical reactions such as electrochemical and reforming reactions in high temperature fuel cells such as SOFC. It is found that the thermal inertia of solid materials in SOFC plays an important role to the dynamic behavior of cell temperature. Dynamic characteristics of cell voltage, power, and chemical compositions with different levels of load change are investigated.

Study on Reaction Characteristics and Catalysts to Reform Diesel for Production of Hydrogen (수소생산을 위한 디젤 개질용 촉매와 반응특성에 관한 연구)

  • Kang, In-Yong;Bae, Joong-Myeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • Diesel is one of the best hydrogen systems, which has very high volumetric density $[kg\;H_2/m^3]\;(>100)\;and\;gravimetric\;density[\%\;H_2]\;(>\;15)$Several catalysts were selected for diesel reforming. 3 catalysts of our group (NECS-1, NECS-2, NECS-3) and 2 commercial catalysts (Sud-Chemie, Inc, FCR-HCl4, FCR-HC35) were used to reform diesel. NECS-1 showed the best performance to reform diesel. In addition to these results, we studied on reaction characteristics for better understanding about auto thermal reforming of diesel by investigating product gas concentrations and temperature Profiles along the catalyst bed. We found technological issues such as fuel delivery and thermal configuration between front exothermic part and rear endothermic part.

Optimal Design of Carbon Dioxide Dry Reformer for Suppressing Coke Formation (코크 생성 억제를 위한 이산화탄소 건식 개질 반응기의 최적 설계)

  • Lee, Jongwon;Han, Myungwan;Kim, Beomsik
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.176-185
    • /
    • 2018
  • As global warming accelerates, greenhouse gas reduction becomes more important. Carbon dioxide dry reforming is a promising green-house gas reduction technology that can obtain CO and $H_2$ which are high value-added materials by utilizing $CO_2$ and $CH_4$ which are greenhouse gases. However, there is a significant coking problem during operation of the dry reforming reactor. Because the carbon dioxide dry reforming is a strong endothermic reaction, the temperature of the reactor drops near the reactor inlet and causes coke formation. To solve this problem, it is important to ensure that the reaction takes place in a temperature range where coke production is minimized. In this study, we proposed a design method that can maintain reaction temperature in the region where the coke is rarely generated by using the new catalyst configuration method. The design method also optimizes the reactor by solving the optimization problem which minimizes the reactor length for a given reaction conversion by using the fuel flow rate, catalyst density, and output temperature by section as optimization variables.

An Experimental Study on Reductions of Idle Emissions with the Syngas Assist in an SI Engine (합성가스를 이용한 SI 엔진의 공회전 유해 배기가스 저감에 관한 실험적 연구)

  • Kim, Chang-Gi;Kang, Kern-Young;Song, Chun-Sub;Cho, Young-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.174-182
    • /
    • 2007
  • Fuel reforming technology for the fuel cell vehicles could be applied to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this study, syngas was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction is varied to 0%, 50%, 100% with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions.

The development of fuel processor for compact fuel cell cogeneration system (소형 열병합 연료전지 연계형 연료처리시스템 개발)

  • Cha, Jung-Eun;Jun, Hee-Kwon;Park, Jung-Joo;Ko, Youn-Taek;Hwang, Jung-Tae;Chang, Won-Chol;Kim, Jin-Young;Kim, Tae-Won;Kim, In-Ki;Jeong, Young-Sik;Kal, Han-Joo;Yung, Wang-Rai;Jung, Woon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.323-327
    • /
    • 2009
  • To extract hydrogen for stack, fuels such as LPG and LNG were reformed in the fuel processor, which is comprised of desulfurizer, reformer, shift converter, CO remover and steam generator. All elements of fuel processor are integrated in a single package. Highly active catalysts (desulfurizing adsorbent, reforming catalyst, CO shift catalyst, CO removal catalyst) and the various burners were developed and evaluated in this study. The performance of the developed catalysts and the commercial ones was similar. 1 kW, 5 kW class fuel processor systems using the developed catalyst and burner showed efficiency of 75 %(LHV, for LNG). The start-up time of the 1 kW class fuel processor was less than 50 minutes and its volume including insulation was about 30 l. The start-up time of 3 kW and 5 kW class fuel processors with the volume of 90 l and 150 l, respectively, was about 60 minutes. In the case of LPG fuel, efficiency, volume and start-up time of 1kW class fuel processor showed 73 %(LHV), < 60 l and < 60 min, respectively. Advanced fuel processor showed more highly efficiency and shorter start-up time due to the improvement of heat exchanger and operating method. 1 kW and 3 kW class fuel processors have been evaluated for reliability and durability including with on/off test of developed catalysts and burner.

  • PDF

Technical Trends of Hydrogen Production (수소생산 기술동향)

  • Ryi, Shin-Kun;Han, Jae-Yun;Kim, Chang-Hyun;Lim, Hankwon;Jung, Ho-Young
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.121-132
    • /
    • 2017
  • The increase of greenhouse gases and the concern of global warming instigate the development and spread of renewable energy and hydrogen is considered one of the clean energy sources. Hydrogen is one of the most elements in the earth and exist in the form of fossil fuel, biomass and water. In order to use hydrogen for a clean energy source, the hydrogen production method should be eco-friendly and economic as well. There are two different hydrogen production methods: conventional thermal method using fossil fuel and renewable method using biomass and water. Steam reforming, autothermal reforming, partial oxidation, and gasification (using solid fuel) have been considered for hydrogen production from fossil fuel. When using fossil fuel, carbon dioxide should be separated from hydrogen and captured to be accepted as a clean energy. The amount of hydrogen from biomass is insignificant. In order to occupy noticeable portion in hydrogen industries, biomass conversion, especially, biological method should be sufficiently improved in a process efficiency and a microorganism cultivation. Electrolysis is a mature technology and hydrogen from water is considered the most eco-friendly method in terms of clean energy when the electric power is from renewable sources such as photovoltaic cell, solar heat, and wind power etc.