• Title/Summary/Keyword: Fuel quality 2-S

Search Result 81, Processing Time 0.029 seconds

Case Analysis on High Concentration of SO2 and Review on Its Reduction Policy in the Ulsan Metropolitan Area since 2001 (울산 지역에서 2001년 이후 이산화황(SO2)의 고농도 사례 분석과 저감 정책 방안의 검토)

  • Moon, Yun-Seob
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.423-437
    • /
    • 2008
  • Until comparatively lately, the annual time series of the $SO_2$ concentration had been shown in a decreasing trend in Ulsan as well as other Korean cities. However, the high concentration of $SO_2$ was frequently found in the specific countermeasure region including the national industrial complex such as Mipo and Onsan in the Ulsan city for the period of $2001{\sim}2004$. There are many conditions that can influence the high concentration of $SO_2$ at monitoring sites in Ulsan, such as: First, annual usage of the fuel including sulfur increased in comparison with the year before in spite of the fuel conversion policy which wants to use low sulfur oil less than 3% and LNG. Second, point source, such as the power plants and the petroleum and chemistry stacks, was the biggest contributor in $SO_2$ emission, as a analyzed result of both the air quality modeling and the stack tole-monitoring system (TMS) data. And third, the air pollutants that occurred in processes of homing and manufacturing of the fuel including sulfur were transported slow into a special monitoring site by accumulating along the frontal area of see-breeze. It was concluded that Ulsan's current environmental policy together with control methods should be changed into the regulation on total amount of emission, including a market-based emission trading with calculating of atmospheric environmental critical loads, for the $SO_2$ reduction like the specific countermeasure for the $O_3$ and PM10 reduction in the Seoul metropolitan area. And this change should be started in the big point sources of $1{\sim}3$ species because they are big contributors of Ulsan's $SO_2$ pollution. Especially it is necessary to revitalize of the self-regulation environmental management. Other control methods for sustaining the $SO_2$ reduction are as follows: maintenance of the fuel conversion policy, reinforcement of the regional stationary source emission standard, and enlargement of the stack TMS.

DEVELOPMENT OF LEAD SLOWING DOWN SPECTROMETER FOR ISOTOPIC FISSILE ASSAY

  • Lee, YongDeok;Park, Chang Je;Ahn, Sang Joon;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.837-846
    • /
    • 2014
  • A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ~E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

An Experimental Study of the Spray Characteristics for an Oxidizer-rich Preburner Injector (산화제 과잉 예연소기 인젝터의 분무 특성에 관한 연구)

  • So, Y.S.;Yang, J.H.;Han, Y.M.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • The spray characteristics of the oxidizer-rich preburner are investigated. This system is generally operated at an oxidizerfuel mixture ratio of 50. The spray quality and mixing performance are very important for safe combustion. To know the spray characteristics of the oxidizer-rich preburner, we have designed various swirl injectors and measured droplet velocity and size by the PDPA system. The flow discharge coefficient of the fuel orifice is $0.12{\sim}0.21$, oxidizer orifice discharge coefficient is $0.16{\sim}0.28$. From the spray visualization, fuel nozzle spray angle is $15^{\circ}{\sim}25^{\circ}$, oxidizer nozzle spray angle is $65^{\circ}{\sim}85^{\circ}$ and combined spray angle is reduced $2^{\circ}{\sim}5^{\circ}$ compared to the oxidizer nozzle only case. From the PDPA measurement, droplet SMD is $175\;{\mu}m$ at 50 mm and $190\;{\mu}m$ at 100 mm of variant 1 combined case. The number concentration measurement revealed the reason of the droplet diameter increasement with distance. That is due to drop coalescence results from collision of drops which is occurred in dense sprays at a long distance from nozzle orifice exit.

  • PDF

Improvement of Engine Stall by Load Increment on Tracked Armored Vehicles (부하증가로 인한 궤도형 장갑차의 엔진꺼짐현상 개선)

  • Moon, Tae-Sang;Kim, Kyungro;Lee, Yuki;Kang, Taewoo;Kim, Jaekyu;Kim, Seongil;Park, Bongsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.492-497
    • /
    • 2015
  • Currently, there are many kinds of tracked armored vehicles in service and they have encountered various environment and situations. So there are many obstacles to operate them improperly such as an engine stall. The causes of engine stall are an insufficient fueling, a mixture of air-fuel or vapor lock, and load increment which results from a rapid steering or increasing a viscosity of lubricant by low temperature. In this paper, engine stall by load increment due to a rapid steering or increasing of lubricant viscosity on tracked armored vehicles is analyzed, the ways to prevent it are applied, and their degrees of improvement are evaluated.

A Study on Development of Reliability Assessment of GHG-CAPSS (GHG-CAPSS 신뢰도 평가 방법 개발을 위한 연구)

  • Kim, Hye Rim;Kim, Seung Do;Hong, Yu Deok;Lee, Su Bin;Jung, Ju Young
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.203-219
    • /
    • 2011
  • Greenhouse gas(GHG) inventories were reported recently in various fields. It, however, has been rarely to mention about the accuracy and reliability of the GHG inventory results. Some reliable assessment methods were introduced to judge the accuracy of the GHG inventory results. It is, hence, critical to develop an evaluation methodology. This project was designed 1) to develop evaluation methodology for reliability of inventory results by GHG-CAPSS, 2) to check the feasibility of the developed evaluation methodology as a result of applying this methodology to two emission sources: liquid fossil fuel and landfill, and 3) to construct the technical roadmap for future role of GHG-CAPSS. Qualitative and quantitative assessment methodologies were developed to check the reliability and accuracy of the inventory results. Qualitative assessment methodology was designed to evaluate the accuracy and reliability of estimation methods of GHG emissions from emission and sink sources, activity data, emission factor, and quality management schemes of inventory results. On the other hand, quantitative assessment methodology was based on the uncertainty assessment of emission results. According to the results of applying the above evaluation methodologies to two emission sources, those seem to be working properly. However, it is necessary to develop source-specific rating systems because emission and sink sources exhibit source-specific characteristics of GHG emissions and sinks.

Fabrication of Solid Oxide Fuel Cells with Electron Beam Physical Vapor Deposition: I. Preparation of Thin Electrolyte Film of YSZ (전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조 : I. YSZ 박막 전해질의 제조)

  • Kim, Hyoungchul;Koo, Myeong-Seo;Park, Jong-Ku;Jung, Hwa-Young;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.85-91
    • /
    • 2006
  • Electron Beam Physical Vapor Deposition (EB-PVD) was applied to fabricate a thin film YSZ electrolyte with large area on the porous NiO-YSZ anode substrate. Microstructural and thermal stability of the as-deposited electrolyte film was investigated via SEM and XRD analysis. In order to obtain an optimized YSZ film with high stability, both temperature and surface roughness of substrate were varied. A structurally homogeneous YSZ film with large area of $12\times12\;cm^2$ and high thermal stability up to $900^{\circ}C$ was fabricated at the substrate temperature of $T_s/T_m$ higher than 0.4. The smoother surface was proved to give the better film quality. Precise control of heating and cooling rate of the anode substrate was necessary to obtain a very dense YSZ electrolyte with high thermal stability, which affords to survive after post heat treatment for fabrication a cathode layer on it as well as after long time operation of solid oxide fuel cell at high temperature.

Phase-resolved CARS Temperature Measurements in a Lean Premixed Gas Turbine Combustor (2);Effect of equivalence ratio on phase-resolved gas temperature (CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (2);당량비가 위상별 온도에 미치는 영향)

  • Lee, Jong-Ho;Moon, Gun-Feel;Park, Chul-Woong;Hahn, Jae-Won;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.103-108
    • /
    • 2003
  • The effect of equivalence ratio and fuel/air mixing quality on the phase-resolved gas temperatures at different phases of the oscillating pressure cycle was experimentally investigated. An atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane with heat release rate of 1.59kW was used. Temperature measurements were made using coherent anti-Stokes Raman spectroscopy (CARS) at several spatial locations for typical unstable combustion conditions. Analysis was conducted using parameters such as phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs). Also the probability on the occurrence of high temperature (over 1900K) was investigated to get the information on the perturbation of equivalence ratio and NOx emission characteristics. It was shown that most of temperature histograms exhibit Gaussian profile which has short breadth of temperature fluctuation at equivalence ratio of 0.6, while beta profile was predominant for the cases of other equivalence ratios (${\Phi}$=0.55, 0.50). The characteristics on the occurrence of high temperature also displayed periodic wave form which is very similar to the pressure signal. And the amplitude of this profile goes larger as the fuel/air mixing quality become poorer. These also provided additional information on the perturbation of equivalence ratio at flame as well as NOx emission characteristics.

  • PDF

Remote Sensing of Atmospheric Trace Species using Multi Axis Differential Optical Absorption Spectroscopy (Multi Axis DOAS를 이용한 대기미량 물질 원격 측정)

  • Lee Chul-Kyu;Kim Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.141-151
    • /
    • 2006
  • UV-visible absorption measurement techniques using several horizone viewing directions in addition to the traditional zenith-sky pointing have been recently developed in ground-based remote sensing of atmospheric constituents. The spatial distribution of various trace gases close to the instrument can be derived by combing several viewing directions. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique, one of the remote sensing techniques for air quality measurements, uses the scattered sunlight as a light source and measures it at various elevation angles (corresponding to the viewing directions) by sequential scanning with a stepper motor. A MAX-DOAS system developed by GIST/ADEMRC has been applied to measuring trace gases in urban air and plumes of the volcano and fossil fuel power plant in January, May, and October 2004, respectively. MAX-DOAS spectra were analyzed to identify and quantify $SO_2,\;NO_2,\;BrO,\;and\;O_4$ (based on Slant Column Densities, SCD) in the urban air, volcanic plume, and fossil fuel power plant utilizing theirs specific structured absorption features in the UV-visible region. Vertical scan through the multiple elevation angles was performed at different directions perpendicular to the plume dispersion to retrieve cross-sectional distribution of $SO_2\;or\;NO_2$ in the plumes of the volcano and fossil fuel power plant. Based on the estimated cross sections of the plumes the mixing ratios were estimated to 580 $SO_2$ ppbv in the volcanic Plume, and 337 $NO_2\;and\;227\;SO_2$ ppbv in the plume of the fossil fuel power plant, respectively.

Effect of Operational Parameters on the Products from Catalytic Pyrolysis of Date Seeds, Wheat Straw, and Corn Cob in Fixed Bed Reactor

  • Sultan Mahmood;Hafiz Miqdad Masood;Waqar Ali khan;Khurram Shahzad
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.591-597
    • /
    • 2023
  • Pakistan depends heavily on imports for its fuel requirements. In this experiment, catalytic pyrolysis of a blend of feedstock's consisting of date seed, wheat straw, and corn cob was conducted in a fixed bed reactor to produce oil that can be used as an alternative fuel. The main focus was to emphasize the outcome of important variables on the produced oil. The effects of operating conditions on the yield of bio-oil were studied by changing temperature (350-500 ℃), heating rate (10, 15, 20 ℃/min), and particle size (1, 2, 3 mm). Moreover, ZnO was used as a catalyst in the process. First, the thermal degradation of the feedstock was investigated by TGA and DTG analysis at 10 ℃/min of different particle sizes of 1, 2, and 3mm from a temperature range of 0 to 1000 ℃. The optimum temperature was found to be 450 ℃ for maximum degradation, and the oil yield was indicated to be around 37%. It was deduced from the experiment that the maximum production of bio-oil was 32.21% at a temperature of 450 ℃, a particle size of 1mm, and a heating rate of 15 ℃/min. When using the catalyst under the same operating conditions, the bio-oil production increased to 41.05%. The heating value of the produced oil was 22 MJ/kg compared to low-quality biodiesel oil, which could be used as a fuel.

Analysis of Customer Power Quality Characteristics Using PV Test Devices (태양광전원 계통연계시험장치에 의한 수용가 전력품질특성에 관한 연구)

  • Kim, Byungmok;Kim, Byungki;Park, Jeabum;Rho, Daeseok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.4
    • /
    • pp.21-27
    • /
    • 2011
  • Recently, new distributed power sources such as photovoltaic, wind power, fuel cell systems etc. are energetically interconnected and operated in the distribution feeders, as one of the national projects for alternative energy. When new power sources are considered to be interconnected to distribution systems, bi-directional power flow and interconnection conditions of new power sources may cause several power quality problems like voltage sag, voltage swell, harmonics, since new power sources can change typical characteristics of distribution systems. Under these situations, this paper deals with the analysis the power quality problems at primary and secondary feeders in distribution systems, when new power sources like photovoltaic (PV) systems are interconnected, by using the test devices for PV systems based on the LabVIEW S/W. This paper presents the test device which is consisted with model distribution system and model PV systems. By performing the simulation for power quality operation characteristic based on the test facilities, this paper presents the optimal countermeasures for power quality.