• Title/Summary/Keyword: Fuel property

Search Result 382, Processing Time 0.029 seconds

Solution Combustion Synthesis of LaFeO3 Powders and Their Carbon Ignition Property (용액연소합성법을 이용한 LaFeO3 분말 합성 및 탄소 연소 특성)

  • Rang, Da-Sik;Lee, Tae-Kun;Hwang, Yeon;Bae, Kwang-Hyun;Cho, Sung-Baek
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.382-385
    • /
    • 2007
  • [ $LaFeO_3$ ] powders were prepared as the oxidation catalyst materials to reduce the emission of particulate matters from diesel engine and their catalytic effects on the oxidation of carbon were investigated. Solution combustion method was employed for the powder synthesis, which uses highly exothermic and selfsustaining reactions. In this study $LaFeO_3$ powders were synthesized at $400^{\circ}C$ as varying the ratio ($\Phi$) of fuel (citric acid) and oxidizer (metal nitrate), and their phase and carbon ignition property were examined. As $\Phi$ decreases, the crystallinity of synthesized $LaFeO_3$ powders enhanced. By calcining at $700^{\circ}C$, all the powders synthesized at various $\Phi$ fully crystallized. The calcined $LaFeO_3$ powders showed carbon ignition temperature as low as $501{\sim}530^{\circ}C$, which implied the decrease of the ignition temperature by $120{\sim}150^{\circ}C$.

Research on Mechanical Properties and Characteristics of Hybrid Composites for Boat (보트에 적용되는 하이브리드 복합재에 대한 기계적 특성 연구)

  • Cho, Je-Hyoung;Kim, Sung-Hoon;Yoon, Sung-Won;Ha, Jong-Rok;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2016
  • Recently, Application of composite materials are increased in transport area for weight reduction. Also, Related technical developments have been implemented actively at domestic and abroad. In particular, The carbon fiber has high strength and ultra light property higher than stainless steel, aluminum, GFRP as Eco-friendly material. Carbon fiber contribute to improving the environmental effect such as fuel saving, expansion of loadage, reducing the exhaustion of carbon dioxide through the weight reduction of transport area. In addition, The carbon fiber is applied to the ship in the area of race yacht, luxury cruise boat as weight reduction and high added-value materials, but there is limited application for general boat because price of carbon fiber is very expensive. For the weight reduction of general boat hull, being used as structure materials, glass fiber and carbon fiber are applied to hull with form of hybrid composite materials, but application of domestic and research for development are incomlete. In this study, An evaluations of mechanical strength property and fatigue strength are performed on composite materials by hybrid weaving of glass fiber and carbon fiber and composite materials forming method by hybrid forming.

Characterization of Microstructure and Thermal property of Ash Deposits on Fire-side Boiler Tube

  • Bang, Jung Won;Lee, Yoon-Joo;Shin, Dong-Geun;Kim, Younghee;Kim, Soo-Ryong;Baek, Chul-Seoung;Kwon, Woo-Teck
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.659-664
    • /
    • 2016
  • Ash deposition of heat exchange boiler, caused mainly by accumulation of particulate matter, reduces heat transfer of the boiler system. Heat and mass transfer through porous media such as ash deposits mainly depend on the microstructure of deposited ash. Therefore, in this study, we investigated microstructural and thermal properties of the ash deposited on the boiler tube. Samples for this research were obtained from the fuel economizer tube in an industrial waste incinerator. To characterize microstructures of the ash deposit samples, scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) and BET analysis were employed. The results revealed that it had a porous structure with small particles mostly of less than a few micrometers; the contents of Ca and S were 19.3, 22.6% and 18.5, 18.7%, respectively. Also, the results showed that it consisted mainly of anhydrite ($CaSO_4$) crystals. - The thermal conductivities of the ash deposit sample obtained from the economizer tube in industrial waste incinerator were measured to be 0.63 and 0.54 W/mK at $200^{\circ}C$, which were about 100 times less than the thermal conductivity (61.32 W/mK) of the boiler tube itself, indicating that ash deposition on the boiler tube was closely related to a decrease in boiler heat transfer.

Improvement of Low Temperature Property of Biodiesel from Palm Oil and Beef Tallow Via Urea Complexation (요소 착물형성에 의한 포화지방산 고함유 팜유 및 우지 유래 바이오디젤의 저온유동성 개선효과 연구)

  • Lee, Yong-Hwa;Shin, Jung-Ah;Zhang, Hua;Lee, Ki-Teak;Kim, Kwang-Soo;Jang, Young-Seok;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.8 no.4
    • /
    • pp.38-43
    • /
    • 2012
  • Biodiesel is non-petroleum based fuel produced from vegetable oils or animal fats through transesterification. The compositions of saturated and unsaturated fatty acids in the feedstocks are important factors for biodiesel quality in terms of low-temperature fluidity and oxidative stability. The goal of this study is to improve the cold flow property of biodiesel from vegetable and animal origin containing highly saturated methyl esters (approx. 50%). In this purpose poly-saturated methyl esters in palm and tallow biodiesel were removed via urea-based fractionation and then the recovered fractions (enriched unsaturated fatty acid methyl esters) were supplemented with cold flow improvers. The highest concentration of unsaturated fatty acid methyl esters (93.8%) was obtained using a urea/fatty acid ratio of 3:1 at the crystallization temperature of $0^{\circ}C$ for 17 hours in incubation, with recovery of 71% and the addition of cold flow improver (Flozol$^{(R)}$ 515, 3,000 ppm) to the enriched poly-unsaturated fatty acid methyl esters reduced the CFPP(cold filter plugging point) of palm biodiesel from $12^{\circ}C$ to $-42^{\circ}C$. In tallow biodiesel both the enrichment of unsaturated fatty acid methyl esters (93.71%) and the addition of cold flow improver (Infineum R408, 3,000ppm) reduced the CFPP from $10^{\circ}C$ to $-32^{\circ}C$.

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel (원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석)

  • Kim, Woe Tae;Kim, Seong Soo
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2021
  • Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.

A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying (초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구)

  • Bae, Myung-Whan;Park, Byoung-Ho;Jung, Hwa;Park, Hui-Seong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.

The Corrosion Properties of Zr-Cr-NM Alloy Metallic Waste Form for Long-term Disposal (Zr-Cr-NM 금속폐기물고화체 합금의 장기처분을 위한 부식특성)

  • Han, Seungyoub;Jang, Seon Ah;Eun, Hee-Chul;Choi, Jung-Hoon;Lee, Ki Rak;Park, Hwan Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2017
  • KAERI is conducting research on spent cladding hulls and additive metals to generate a solidification host matrix for the noble metal fission product waste in anode sludge from the electro-refining process to minimize the volume of waste that needs to be disposed of. In this study, alloy compositions Zr-17Cr, Zr-22Cr, and Zr-27Cr were prepared with or without eight noble metals representing fuel waste using induction melting. The microstructures of the resulting alloys were characterized and electrochemical corrosion tests were conducted to evaluate their corrosion characteristics. All the compositions had better corrosion characteristics than other Zr-based alloys that were evaluated for comparison. Analysis of the leach solution after the corrosion test of the Zr-22Cr-8NM specimen indicated that the noble metals were not leached during corrosion under 500 mV imposed voltage, which simulates a highly oxidizing disposal environment. The results of this study confirm that Zr-Cr based compositions will likely serve as chemically stable waste forms.

A Study on Durability Characteristics for Plungers of Conventional Ceramic and Surface Modification by Powder Coating Using High Velocity Oxygen Fuel Thermal Spray (기존 세라믹 및 초고속 용사 분말피막 표면개질 플런저의 내구성 특성에 관한 연구)

  • Bae, Myung-whan;Park, Byoung-ho;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.285-293
    • /
    • 2016
  • The high velocity oxygen fuel(HVOF) thermal spray is a kind of surface modification techniques to produce the sprayed coating layer. This process is to form the coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. The efficiency of thermal spraying is dropped, however, because the semi-molten powder in a spray process become a factor that degrades the mechanical property by the formed pore within the coating layer. Therefore, it is necessary to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesive force. In this study, to improve the wear resistance, corrosion resistance and heat resistance, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps used in ironworks are manufactured with STS $420J_2$ and are coated by the powders of WC-Co-Cr and WC-Cr-Ni including the WC of high hardness using a HVOF thermal sprayer developed in this laboratory. These are called by the surface-modified plungers. The surface roughness, hardness, and surface and cross-sectional microstructure of these two surface-modified and conventional ceramic plungers are measured and compared before operation with after operation for 100 days. It is found that the values of centerline average surface roughness and maximum height for conventional ceramic plunger are 9.5 to 10.8 and 5.2 to 5.7 times higher than those of surface-modified ones coated by WC-Co-Cr and WC-Cr-Ni because the fine tops and bottoms on surface roughness curve of conventional ceramic plunger are approximately 100 times higher than those of surface-modified ones. In addition, the pores and scratches in the surface microstructure are considerably formed in the order of conventional ceramic, WC-Cr-Ni and WC-Co-Cr surface-modified plungers. The greater the WC content of high hardness powder is less the change in the plunger surface.

A Kinetic Studies of the Pyrolysis of Waste Plastic Based on the Thermogravimetic Analyses (폐플라스틱의 열분해 시 열중량 분석 및 동역학 연구)

  • Jung, Won Hak;Hwang, Hyeon Uk;Kim, Myung Gyun;Sun, JianFeng;Mutua, Nzioka Antony;Kim, Young Ju
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • Waste plastic differs in its speed of combustion owing to its variety in composition as well as kinds of plastic. This study is aimed at examining the thermal weight analysis and determination of its kinetics in order to derive the design element in pyrolysis of RPF (Refused Plastic Fuel) as the plastic solid fuel. Based on the result of TGA (Thermogravimetric analysis), kinetic characteristics were analyzed by using Kissinger method which are the most common method for obtaining activation energy, and experimental conditions of TGA were set as follows: in a nitrogen atmosphere, gas flow rate of 20 ml/min, heating rate of $5{\sim}50^{\circ}C/min$, and maximum hottest temperature of $800^{\circ}C$. The method used for determining the property of waste plastic when thermally decomposed was thought feasible as the basic data in deciding the performance, design, and optimal operating condition of the reactor in the actual reactor.

A Study on the Life Time Prediction and Acid-Heat aging Property of NBR Rubber for Fuel Cell Gasket (연료전지 카스켓용 NBR 고무의 산-열 노화 특성과 수명예측에 관한 연구)

  • Kim, Mi-Suk;Kim, Jin-Hak;Kim, Seok-Jin;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.20-31
    • /
    • 2007
  • Material characteristics and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the NBR compound was prepared by sulfur-cure system, and was used in predicting the lifetime of rubber gasket made by the compound. The accelerated material aging was investigated at different temperatures at 120, 140 and $160^{\circ}C$ and aging time from 3 hours to 600 hours at 5, 6, 7 vol %. of $H_2SO_4$ concentrations The rubber strips were placed in acid solution using pyrex g1ass tube. Both ends of pyrex g1ass tube were sealed to avoid evaporation of solution during heating at given time. The material test and accelerated acid-heat aging test were carried out to predict the useful life of NBR rubber gasket for a fuel cell stack. In order to investigate the effects of acid-heat aging on the properties of the NBR, tensile strength, elongation at break, hardness and crosslink-density were measured. The tensile strength decreases as the $H_2SO_4$ concentrations and temperature increase. Results were evaluated using Arrhenius equation.