• Title/Summary/Keyword: Fuel performance

Search Result 4,130, Processing Time 0.033 seconds

A Study on the Performance Improvement of Diesel Automobile Engine with Ultrasonic Fuel Feeding System(II)-On the Spray Characteristics and Engine Performance- (초음파 연료분사장치용 디젤자동차의 성능향상에 관한 연구(II)-분무특성과 기관성능에 대하여-)

  • Yang, J.K.;Jung, J.D.;Ryu, J. I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.50-56
    • /
    • 1994
  • This is an experimental study on the performance characteristics of Diesel Automobile with ultrasonic fuel feeding system. For this purpose, ultrasonic fuel feeding system was made and atomization characteristics was measured. Base on this result, carried out engine dynamometer test to investigate the performance characteristics of diesel automobile with ultrasonic fuel feeding system in comparison with conventional diesel fuel injector. The results are as follows. 1) In the spray characteristics test, fuel particle sizes were decreased about 11%~21%. 2) In engine dynamometer test, -The power was increased about 5%~11%. -The thermal efficiency was improved about 6%~11%. -The specific fuel consumption was improved about 6%~19%. -The smoke concentration was decreased about 11%~50%.

  • PDF

Aircraft Fuel Efficiency Improvement and Effect through APMS (APMS 활용을 통한 항공기 연비향상 및 기대효과 )

  • Jae Leame Yoo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.81-88
    • /
    • 2023
  • SHM (Structural Health Monitoring) technique for monitoring aircraft structural health and damage, EHM (Engine Health Monitoring) for monitoring aircraft engine performance, and APM (Application Performance Management) is used for each function. APMS (Airplane Performance Monitoring System) is a program that comprehensively applies these techniques to identify the difference between the performance manual provided by the manufacturer and the actual fuel mileage of the aircraft and reflect it in the flight plan. The main purpose of using APMS is to understand the performance of each aircraft, to plan and execute flights in an optimal way, and consequently to reduce fuel consumption. First, it is to check the fuel efficiency trend of each aircraft, check the correlation between the maintenance work performed and the fuel mileage, find the cause of the fuel mileage increase/decrease, and take appropriate measures in response. Second, it is to find the cause of fuel mileage degradation in detail by checking the trends by engine performance and fuselage drag effect. Third, the APMS is to be used in making maintenance work decisions. Through APMS, aircraft with below average fuel mileage are identified, the cause of fuel mileage degradation is identified, and appropriate corrective actions are determined. Fourth, APMS data is used to analyze the economic analysis of equipment installation investment. The cost can be easily calculated as the equipment installation cost, but the benefit is fuel efficiency improvement, and the only way to check this is the manufacturer's theory. Therefore, verifying the effect after installation and verifying the economic analysis is to secure the appropriateness of the investment. Through this, proper investment in fuel efficiency improvement equipment will be made, and fuel efficiency will be improved.

Improving the performance of a Medium Speed Diesel Engine Using Miller Cycle (Miller 사이클을 이용한 중형 디젤 기관 성능 개선)

  • 김동훈;김기두;하지수;김호익;김주태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.248-255
    • /
    • 2002
  • Miller cycle was studied and analyzed by engine performance simulation to achieve very low fuel consumption and to meet the IMO NOx regulation on a medium speed diesel engine. Based on the performance simulation results the intake valve closing time for HYUNDAI HiMSEN 6H21/32 engine was set at 0deg.ABDC(After Bottom Dead Center). Also, the simulation results indicated that significant NOx reduction could be achieved with low reduction of fuel consumption. The performance simulation investigated the effect of compression ratio and turbocharger on fuel consumption and NOx concentration in combination with Miller cycle. The results indicated a significant reduction of fuel consumption with keeping NOx concentration. The results of performance simulation were compared with measured data to verify simulation results. The comparison showed the maximum error was 2.34% in exhaust temperature. Also, the experimental result showed that improvement in BSFC(Brake Specific Fuel Consumption) was 5.8g/kwh with keeping NOx level similar to simulation result.

Prediction of Fuel Cell Performance and Water Content in the Membrane of a Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지의 전해질 막내의 함수율과 성능 예측)

  • Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.151-159
    • /
    • 2006
  • A one-dimensional numerical analysis is carried out to investigate the effects of inlet gas humidities, inlet gas pressures, and thicknesses of membrane on the performance of a proton exchange membrane fuel cell. It is found that the relative humidity of inlet gases at anode and cathode sides has a significant effect on the fuel cell performance. Especially, the desirable fuel cell performance occurs at low relative humidity of the cathode side and at high humidity of the anode side. In addition, an increase in the pressure ranging from 1 atm to 4 atm at the cathode side results in a significant improvement in the fuel cell performance due to the convection effect by a pressure gradient toward the anode side, and with decreasing the thickness of membrane, the fuel cell performance is enhanced reasonably.

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.31-38
    • /
    • 2005
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC(Kelyish Research Center) carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pump was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI(Korea Aerospace Research Institute). The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

Effects of environmental temperature on the performance of direct methanol fuel cell for vehicles (외부온도가 수송용 메탄올연료전지 성능에 미치는 영향)

  • Han, Chang-Hwa;Jung, Dae-Seung;Choi, Ji-Sun;Han, Sang-Hun;Lee, Joong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.176-179
    • /
    • 2009
  • The performance of direct methanol fuel cells is affected by operating conditions such as, methanol feeding temperatures, methanol concentrations, and methanol flow rates during the operation in different environmental conditions. In this study, effects of the environmental temperature on performance of direct methanol fuel cells have been investigated in order to test a applicability of direct methanol fuel cell to the vehicle. The environmental temperature (ET) was varied from $-20^{\circ}C$ to $+30^{\circ}C$. The inside fuel cell temperature (CT) during test at various operating conditions was monitored and the performance of fuel cell was measured in the I-V polarization curve. With increasing the ET, the performance of the fuel cell was significantly improved and the CT also almost linearly increased. However, at below $0^{\circ}C$ ET, the DMFC showed very poor performance and needed to control CT or methanol feeding temperature (MFT), methanol flow rate(MFR) to obtain enough power of the vehicle.

  • PDF

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.341-346
    • /
    • 2004
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pun was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI. The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

  • PDF

A Study on the Performance of Diesel Automobile Engine with Ultrasonic Fule Supply System(III) (On the case of Turbo-charging Diesel Engine) (초음파 연료공급장치용 디젤자동차의 성능 향상에 관한 연구(III) (과급 디젤기관에 대하여))

  • 최두석;이흥영;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.12-18
    • /
    • 1995
  • To improve the performance of diesel automobile engine, we designed new fuel supply system named ultrasonic fuel supply system. The performance test of diesel automobile engine carried out to examine possibility of practical use of ultrasonic fuel supply system to test engine. This paper deals with the comparative results of performance test of diesel automobile engine in terms of smoke, HC, SFC, PS, thermal, efficiency, torque. Following are obtained result. 1) In naturally aspirated diesel engine, when we use ultrasonic fuel supply system output, fuel consumptions are improved and exhaust gas reduced significantly. 2) In turbo-charging diesel engine both using of ultrasonic fuel supply system and using of conventional injector, engine performance and exhaust gas temperature are almost constant. 3) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, NOx are emitted approximately 3.5% higher than total average. 4) In turbo-charging diesel engine, when we use ultrasonic fuel supply system, smoke and CO are 17% and 11.8% improved respectively.

  • PDF

The Energy and Environmental Performance of Hydrogen Fuel Cell System in Apartment Complex (공동주택 단지 적용 수소연료전지 시스템의 에너지 및 환경 성능 평가)

  • Kim, Yong-Hee;Kim, Hae-Jung;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.199-204
    • /
    • 2009
  • This study analyzed the central heating system and the cogeneration system among the methods of supplying energy which have application to the Hydrogen Fuel Cell system and apartment complexes for performance evaluations. Therefore, a feasibility study on the first application of this system in an apartment complexes was considered to evaluate the energy performance by the amount of fuel consumed by the system using Hydrogen Fuel Cell energy and environmental performance by the amount of greenhouse gas emissions. As a result, the Hydrogen Fuel Cell system consumes 83% of fuel while the cogeneration system consumes 81% of fuel comparison to conventional central heating system. The Hydrogen Fuel Cell and the cogeneration system produce 73%t and 70% of greenhouse gas emissions in comparison to conventional central heating system.

  • PDF

Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells

  • Yoon, Young-Gon;Choi, Insoo;Lee, Chang-Ha;Han, Jonghee;Kim, Hyoung-Juhn;Cho, EunAe;Yoo, Sung Jong;Nam, Suk Woo;Lim, Tae-Hoon;Yoon, Jong Jin;Park, Sehkyu;Jang, Jong Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3475-3481
    • /
    • 2014
  • This paper describes how primary contaminants in ambient air affect the performance of the cathode in fuel cell electric vehicle applications. The effect of four atmospheric pollutants ($SO_2$, $NH_3$, $NO_2$, and CO) on cathode performance was investigated by air impurity injection and recovery test under load. Electrochemical analysis via polarization and electrochemical impedance spectroscopy was performed for various concentrations of contaminants during the impurity test in order to determine the origins of performance decay. The variation in cell voltage derived empirically in this study and data reported in the literature were normalized and juxtaposed to elucidate the relationship between impurity concentration and performance. Mechanisms of cathode degradation by air impurities were discussed in light of the findings.