• Title/Summary/Keyword: Fuel pellet

Search Result 252, Processing Time 0.023 seconds

Evaluating the Properties and Commercializing Potential Of Rape Stalk-based Pellets Produced with a Pilot-scaled Flat-die Pellet Mill (파일럿 규모의 평다이 성형기로 제조한 유채대 펠릿의 연료적 특성 및 상용화 가능성 평가)

  • Sei Chang Oh;In Yang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.80-86
    • /
    • 2024
  • This study was conducted to evaluate the potential of rape stalk (RAS) as a raw material for the production of solid bio-fuels. RAS was immersed in an aqueous solution with acetic acid concentration of 1 percent, The content of reducing sugars separated from the RAS was analyzed. Glucose showed the highest content followed by xylose, galactose, arabinose and mannose. The immersed and non-immersed RAS were used for producing pellets with a pilot-scaled flat-die pellet mill. Bulk density and calorific values of the pellets improved with the use of the immersed RAS and the addition of wood particles. The values exceeded the minimum requirements for the A-grade of non-woody pellets (≧600 kg/m3 & ≧ 14.5 MJ/kg) designated by the ISO. Ash content of the pellets reduced with the immersion of RAS and the value satisfied the A-grade level (≦6.0%) of the ISO standard. The durability of the immersed RAS-based pellets was much higher than that of non-immersed IRS-based pellets, and the values were increased with the addition of wood particles. However, the durability did not meet the acceptance level for the B-grade of non-woody pellets (≧96.0%) designated by the ISO. These results suggested that the addition of binders in the production of non-woody pellets using an RAS immersed in acetic acid-based aqueous solution is required for the commercialization of the pellets.

Removal of Nitrogen Using by SOD Process in the Industrial Wastewater Containing Fluoride and Nitrogen from the Zirconium Aolly Tubing Production Factory of the Nuclear Industry (원자력산업 지르코늄합금 튜브 생산공장에서 배출되는 불소.질소 함유 폐수의 황산화탈질을 이용한 질소처리)

  • Cho, Nam-Chan;Moon, Jong-Han;Ku, Sang-Hyun;Noh, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.855-859
    • /
    • 2011
  • The main pollutants from zirconium alloy tubing manufacturing process in nuclear industry are nitrate ($NO_3-N$) and fluoride (F-)Nitric acid, and hydrofluoric acid is used for acid pickling. The process for the removal of nitrate and fluoride is composed of 1st chemical coagulation, SOD (Sulfur Oxidation Denitrification) process using sulfur-oxidizing denitrification, and 2nd chemical coagulation. The characteristic of the wastewater treatment is an application of SOD process. The SOD Process is highly received attention because it is significantly different from existing processes for sulfur denitrification. A JSC (JeonTech-Sulfur- Calcium) Pellet is unification of sulfur and alkalinity material. According to result of SOD process in wastewater treatment plant, the removal efficiency of T-N was over 91% and the average concentration of T-N from influent was 147.55 mg T-N/L and that from effluent was 12.72 mg T-N/L. Therefore, SOD process is a useful to remove nitrogen from inorganic industrial wastewater and a new development of microbial activator was shown to be stable for activation of autotrophic bacteria.

Synthesis and Characterization of La0.75Sr0.25FeO3 Used as Cathode Materials for Solid Oxide Fuel Cell by GNP Method (GNP법을 이용한 고체산화물 연료전지의 공기극용 La0.75Sr0.25FeO3의 제조 및 특성)

  • Park, Ju-Hyun;Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Yun, Ki-Seok;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • We synthesized and investigated $La_{0.75}Sr_{0.25}FeO_3$ by Glycine Nitrate Process(GNP) method used as cathode materials for SOFC(solid oxide fuel cell). Optimized amount of glycine is 3.17 mol. ICP elemental composition analysis indicated that the stoichiometry of the synthesized powders have nearly nominal values. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The sample powders were isostatically pressed to form a pellet. The green body was sintered at $1200^{\circ}C$ and the relative density of the sintered specimens were measured by Archimedes mettled. We measured electrochemical performance of LSF by AC impedance spectroscopy. Resistance of LSF shows lower value than that of LSM throughout all temperature region. The anode-supported solid oxide fuel cell showed a performance of $342mW/cm^2(0.7V,\;488mA/cm^2)$ at $750^{\circ}C$. The electrochemical characteristics of the single cell were examined by at impedance method.

Simulation of Interlinkage of Grain Boundary Gas Bubbles to Free Surfaces by the Monte Carlo Technique (몬테 카를로 기법을 이용한 결정립계 기포의 자유 공간으로의 연결 모사)

  • Koo, Yang-Hyun;Park, Heui-Joo;Sohn, Dong-Seong;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.374-380
    • /
    • 1994
  • A method to simulate the extent of interlinkage of grain boundary gas bubbles to the free surfaces of fuel pellet was developed. With the shape of UO$_2$gain treated as tetrakaidecahedron (TKD)), the interlinked fraction of fission gas bubbles to free surfaces at grain comers was calculated as a function of the radius of grain corner bubbles by the Monte Carlo technique. In spite of two dimensional analysis, the present method shooed reasonable agreement between predicted and measured fuel swelling at the moment that complete bubble interlinkage was achieved. However, for more realistic simulation of interlinkage, grain comer bubbles should be treated three dimensionally.

  • PDF

Remotely Operated Decontamination Systems for Use in DFDF

  • Kim, Kiho;Park, Jangjin;Myungseung Yang
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.438-446
    • /
    • 2003
  • This paper presents the development of the remotely operated decontamination systems for use in a highly radioactive zone of the DUPIC Fuel Development facility of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute. The remotely operated decontamination systems were designed to completely eliminate human interaction with hazardous radioactive contaminants. These decontamination systems are mainly classified into three systems depending on the task environment - a fabrication equipment decontamination system, a hot-cell floor decontamination system, and an isolation room floor decontamination system. A decontamination system for contaminated fabrication equipment utilizes dry ice pellet blasting method to decontaminate contaminated surface of the equipment. The decontamination systems for the hot-cell floor and isolation room floor employ a vacuum cleaning method to decontaminate the contaminated floor and collect loose dry spent nuclear fuel debris and other radioactive waste placed on the floor. The human operator from the out-of-cell performs a series of decontamination tasks remotely by manipulating decontamination systems located in-cell via a handcontroller with the aid of vision feedback information. The environmental, functional and mechanical design considerations, control system and capabilities of the remotely operated decontamination systems at a high radioactive environment are also described.

  • PDF

Effect of $Nb_2O_5$ and $UO_2$ Powder Types on Sintered Density and Grain Size of the $UO_2$ Pellet

  • Yoo, Ho-Sik;Kim, Hyung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.196-200
    • /
    • 1997
  • The variation of sintered density and fain size in ex-AUC, ex-ADU and granulated ex-ADU UO$_2$ pellets in which 0.1~1.0wt% Nb$_2$O$_{5}$ were doped were examined. Pellets were sintered in an atmosphere of H$_2$ at 1$700^{\circ}C$ for 4h. All the specimens tested shooed more than 94% T.D.(Theoretical Density). Sintered density decreased with increasing the amount of Nb$_2$O$_{5}$. Powder types had little influence on the sintered density. Pore size distribution was shifted to the larger ones as Nb$_2$O$_{5}$ was added. The increase of total pore volume and grain growth due to the addition of Nb$_2$O$_{5}$ were thought to be the cause of the sintered density decrease. The largest grain size was seen in the 1. 0wt% Nb$_2$O$_{5}$ doped ex-AUC UO$_2$ pellets. Their average size was 13.9 ${\mu}{\textrm}{m}$.m}$.

  • PDF

Synthesis of Ultrafine NiO/YSZ Composite Powder for Anode Material of Solid Oxide Fuel Cells (고체산화물 연료전지의 양극재료용 초미분체 NiO/YSZ 복합체 재료합성 연구)

  • 최창주;김태성;황종선;김선재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.422-425
    • /
    • 1999
  • Ultrafine NiO/YSZ (Yttria-Stabilized Zirconic) composite powders were prepared by using a glycine nitrate process (GNP) for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal ions occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with $N_2$ absorption, scanning and transmission electron microscopies. Strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$^{+}$ After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal microstructure very fine Ni Particles of 3-5${\mu}{\textrm}{m}$ were distributed uniformly and fine pores around Ni metal particles were formed, thus, leading to an increase of the triple phase boundary among gas, Ni and YSZ.Z.

  • PDF

Influence of Biomass Co-firing on a Domestic Pulverized Coal Power Plant In Terms of CO2 Abatement and Economical Feasibility (다양한 바이오매스 혼소시 국내 미분탄화력에 미치는 이산화탄소 감축 및 경제성 영향 분석)

  • Kim, Taehyun;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2017
  • Co-firing of renewable fuel in coal fired boilers is an attractive option to mitigate $CO_2$ emissions, since it is a relatively low cost option for efficiently converting renewable fuel to electricity by adding biomass as partial substitute of coal. However, it would cause reducing plant efficiency and operational flexibility, and increasing operation and capital cost associated with handling and firing equipment of renewable fuels. The aim of this study is to investigate the effects of biomass co-firing on $CO_2$ emission and capital/operating cost. Wood pellet, PKS (palm kernel shell), EFB (empty fruit bunch) and sludge are considered as renewable fuels for co-firing with coal. Several approaches by the co-firing ratio are chosen from previous plant demonstrations and commercial co-firing operation, and they are evaluated and discussed for $CO_2$ reduction and cost estimation.

A Study on the Pore Characteristics of the U$O_2$ Fuel (U$O_2$핵연료의 기공 특성에 대한 연구)

  • Song, K-W;K.S. Seo;Sohn, D-S;Kim, S.H.;I.S.Chang;H.S. Chang
    • Nuclear Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 1991
  • The microstructure and pore characteristics have been studied on the sintered UO$_2$pellet which was made of the UO$_2$powder manufactured via AUC process. The open porosity decrease with the density and is nearly annihilated above the density of 10.45 g/㎤. The round pore smaller than 3 $\mu$m exist In all densities. The large and elongated pore appears additionally In low density The pore in low density is more elongated than the pore in high density The distribution of the pore area versus the pore size is monomodal and shows its peak on the pore size of 2 to 3 $\mu$m. As the density decreases, the related area of large pore Increases.

  • PDF

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.