• Title/Summary/Keyword: Fuel mixture

Search Result 871, Processing Time 0.027 seconds

Effect of Non-Uniform Mixture on the 4 Cylinder S.I.Engine Performance (4기통 전기점화기관의 혼합기 불균일화가 기관성능에 미치는 영향)

  • 김물시;진성호;박경석;이용길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.72-79
    • /
    • 1994
  • In an automotive spark ignition, it is important to form the proper mixture(air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel is attached on the inside wall of the intake manifold for unadequate atomization by fuel injection system, it brings a bad effect on combustion and exhaust caused by nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in an intake manifold on combustion characteristics and engine performance.

  • PDF

A Study on Homogeneous Mixture Supply in a Multi-Cylinder Spark Ignition Engine - Effect on Combustion Characteristics - (다기통 전기점화기관의 균질혼합기 공급에 관한 연구 - 연소특성에 미치는 영향 -)

  • 김물시;이용길;박경석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2194-2200
    • /
    • 1994
  • In an automotive spark ignition engine, it is important to form the proper mixture (air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel si attached on the inside wall of the intake manifold for unadequate nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in the intake manifold on combustion characteristics and engine performance.

Numerical Study on the Effect of Injection Direction on Mixture Formation Characteristics in DISI Gasoline Engine (가솔린 직분사식 불꽃점화기관에서 연료 분사 방향이 혼합기 형성에 미치는 영향에 관한 수치적 연구)

  • Kim, Taehoon;Park, Sungwook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.101-102
    • /
    • 2014
  • Rising oil price and environmental problems are causing automotive industry to increase fuel efficiency. Improved fuel efficiency in gasoline engine was made possible by development of DISI gasoline engine. Since fuel is injected inside cylinder directly, in-cylinder temperature can be reduced than multi-port injection engine and this leads to increased compression ratio. However, engine performance is largely dependent on mixture formation process due to in-cylinder fuel injection. Especially for spray guided and air guided DISI gasoline engine, injection direction is important factor to mixture preparation. It is because interaction between intake flow and spray affect fuel-air mixture. Hence, in this study, mixture formation characteristics were analyzed by varying injection direction using KIVA 3V release2 code. Residual gas was considered for assuming combustion. Therefore, initial condition for in-cylinder temperature was set equal to the end state of exhaust stroke of combustion cycle. Since angle between intake air flow direction and spray direction affects fluid flow and evaporation field, mixture distribution was affected by fuel injection direction dominantly.

  • PDF

Calculation of fuel temperature profile for heavy water moderated natural uranium oxide fuel using two gas mixture conductance model for noble gas Helium and Xenon

  • Jha, Alok;Gupta, Anurag;Das, Rajarshi;Paraswar, Shantanu D.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2760-2770
    • /
    • 2020
  • A model for calculation of fuel temperature profile using binary gas mixture of Helium and Xenon for gap gas conductance is proposed here. In this model, the temperature profile of a fuel pencil from fuel centreline to fuel surface has been calculated by taking into account the dilution of Helium gas filled during fuel manufacturing due to accumulation of fission gas Xenon. In this model an explicit calculation of gap gas conductance of binary gas mixture of Helium and Xenon has been carried out. A computer code Fuel Characteristics Calculator (FCCAL) is developed for the model. The phenomena modelled by FCCAL takes into account heat conduction through the fuel pellet, heat transfer from pellet surface to the cladding through the gap gas and heat transfer from cladding to coolant. The binary noble gas mixture model used in FCCAL is an improvement over the parametric model of Lassmann and Pazdera. The results obtained from the code FCCAL is used for fuel temperature calculation in 3-D neutron diffusion solver for the coolant outlet temperature of the core at steady operation at full power. It is found that there is an improvement in calculation time without compromising accuracy with FCCAL.

Enthalpy and Void Distributions in Subchannels of PHWR Fuel Bundles

  • Park, J.W.;Choi, H.;Rhee, B.W.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.502-507
    • /
    • 1998
  • Two different types the CANDU fuel bundles hue been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void paction distributions in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From calculated mixture enthalpy distribution at the exit of fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful assessing thermal behavior of the fuel bundle that could be used in CANDU reactors.

  • PDF

The Effect of Injection Timing and Cavity Geometry on Fuel Mixture Formation in a Central Injected DI Gasoline Engine (중앙 분사방식의 직분식 가솔린 기관에서 연료 혼합기 형성에 미치는 분사시기와 캐비티 형상의 영향)

  • 김태안;강정중;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • This study was performed to investigate the behavior of liquid and vapor phase of fuel mixtures with different piston cavity diameters in a optically accessible engine. The conventional engine was modified as Central Injected DI gasoline engine with swirl motion. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze spray behavior and fuel distribution inside of cylinder using exciplex fluorescence method. Piston cavity geometries were set by Type S, M and L. The results obtained are as follows. In the spray formation after SOI, the cone angle and width of the spray were decreased at late injection timing. With a fuel injection timing of BTDC $180^{\circ}C$, fuel was not greatly affected in a piston cavity but generally distributed as homogeneous mixture in the cylinder. With a fuel injection timings of BTDC $90{\circ}C$ and $60^{\circ}C$, fuel mixture was widely distributed in near the cavity center. As a injection timing was late in the compression stroke, residual width of fuel mixture was narrow in proportion to piston cavity.

ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

  • Lee, Seok-Y.;Huh, Kang-Y.;Kim, Y.M.;Lee, J.H.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.93-101
    • /
    • 2001
  • Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

  • PDF

A Study on the Fuel Behaivor with Cavity Diameter in a Gasoline Direct Injection Engine (직분식 가솔린 엔진에서 피스톤 캐비티 반경에 따른 연료 거동 분석)

  • Kim, Tae-An;Kang, Jeong-Jung;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.472-477
    • /
    • 2003
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston cavity diameters in a optically accessible engine. The images of vapor phases were measured in the motoring engine using exciplex fluorescence method. The conventional engine was modified as GDI engine with swirl flow. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behavior and fuel distribution inside of cylinder. Three injection timings were set at BTDC $180^{\circ}$, $60^{\circ}$and $60^{\circ}$. With a fuel injection timing of BTDC $60^{\circ}$, fuel-rich mixture was concentrated in near the cavity center. With a fuel injection timing of BTDC $60^{\circ}$, fuel-rich mixture level in the center region was highest in the S-type during the late compression stroke. With a fuel injection timing of BTDC $180^{\circ}$, fuel was not affected in a piston cavity and generally distributed as homogeneous mixture.

  • PDF

A Study on Mixture Preparation in a Port Fuel Injection Sl Engine During Engine Starting (흡기포트 분사방식의 가솔린 엔진에서 냉시동시 혼합기 형성에 관한 연구)

  • 황승환;이종화;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.15-22
    • /
    • 2002
  • As the emission regulations on the automobiles have been increasingly stringent, precise control of air/fuel ration is one of the most important issues on the gasoline engines. Although many researches have been carried out to identify the fuel transport phenomena in the port fuel injection gasolines, mixture preparation in the cylinder has not been fully understood due to the complexity of fuel film behavior, In this paper, the mixture preparation during cold engine start is studied by using a Fast Response Flame ionization Detector.(FRFID) In order to estimate the transportation of injected fuel from the intake port into cylinder, the wall wetting fuel model was used. The two coefficient($\alpha$,$\beta$) of the wall-wetting fuel model was determined from the measured fuel mass that was inducted into the cylinder at the first cycle after injection cut-in. $\alpha$( ratio of directly inducted fuel mass into cylinder from injected fuel mass) and $\beta$ (ratio of indirectly inducted fuel mass into cylinder from wall wetted fuel film on the wall) was increased with increasing cooling water temperature. To reduce a air/fuel ratio fluctuation during cold engine start, the appropriate fuel injection rate was obtained from the wall wetting fuel model. Result of air/fuel ratio control, air/fuel excursion was reduced.

An Engine Model of a Heavy-Duty Compressed Natural Gas Engine for Design of an Air-Fuel Ratio Controller (대형천연가스차량의 공연비제어기 설계를 위한 엔진모델)

  • 심한섭;이태연
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.80-87
    • /
    • 2003
  • Air partial pressure ratio and inlet air mass flow are influenced by water vapor and gaseous fuel in mixture on Compressed Natural Gas (CNG) engines. In this paper, the effects of the water vapor and the gaseous fuel that change the air mass flow and the air-fuel ratio are studied. Effective air mass ratio is defined as the air mass flow divided by mixture mass flow, and also it is applied to the estimation of the inlet air mass flow and the air-fuel ratio. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the CNG engines. The experimental results for the CNG engine show that estimation of the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal mode.