• 제목/요약/키워드: Fuel injection timing

검색결과 338건 처리시간 0.028초

LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성 (Emissions and Combustion Characteristics of LPG HCCI Engine)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

직분식 가솔린 인젝터의 분사 조건에 따른 분무 특성 분석 (An Investigation of the Spray Characteristics according to Injection Conditions for a Gasoline Direct Injector)

  • 이기형;이창식;이창희;류재덕;배재일
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.89-95
    • /
    • 2001
  • Recently GDI(Gasoline Direct Injection) engine is spotlighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. When compared to PFI(Port Fuel Injection) engine, GDI engine needs more complicated control and optimal design with injection system. In addition, spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is also varied. Thus spray structure should be analyzed in details to meet various conditions. In this experimental study, two types of visualization system were developed to simulate compression stroke and intake stroke, respectively. With an increase of the ambient pressure, the penetration length tends to decrease due to rising resistance caused by the drag force of the ambient air. Spray characteristics impinged on the piston has a significant effect on mixture stratification around the spark plug. These results provide the information on macroscopic spray structure and design factors far developing GDI injector.

  • PDF

엔진 유동장에서 분사시기에 따른 혼합기의 기ㆍ액상 농도 분포에 관한 연구 (Concentration Distribution of Liquid/vapor Phases under In-Cylinder Flow Field with Different Injection Timings)

  • 김한재;최동석;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.96-104
    • /
    • 2001
  • The present study experimentally investigates the concentration distribution of liquid and vapor phase with different injection timings in the in-cylinder flow field of a optically accessible engine. The conventional MPI, DOHC engine was modified into DI gasoline engine. The images of liquid and vapor phases in the motoring engine were captured by using exciplex fluorescence method. Dopants used in this study were 2% fluorobenzene and 9% DEMA(diethyl-methyl-amino) in 89% solution of hexane by volume respectively. Two dimensional spray fluorescence images of liquid and vapor phases were acquired to analyze spray behaviors and fuel distribution in the in-cylinder flow field. Measurements were carried out fur four different injection timings, namely BTDC 270$^{\circ}$, 180$^{\circ}$, 90$^{\circ}$, and 50$^{\circ}$. Experimental results indicate that behaviors and distribution of vapor phase were largely affected by in-cylinder tumble flow, and mixture formation process was also greatly affected by in-cylinder flow at early injection mode and by ambient pressure at late injection mode.

  • PDF

유닛인젝터용 고속응답 솔레노이드 설계 및 응용에 관한 연구 (A Study on Design and Application of High Response Solenoid for Unit Injector)

  • 황재원;양이진;정영식;이상만;채재우
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.43-51
    • /
    • 1998
  • Most of fuel-injection system operated with mechanical methods are difficult to control the injection quantity and injection timing as well as injection rate exactly. Moreover high pressure injection scheme is never be realized with conventional one. On the other hand, serious air pollution can be lessened with injection system equipped with those functions. Therefore, electronically controlled Unit Injuctor(UI) appeared to satify above mentioned desires. However, it is still difficult that the most important part, especially solenoid valve, is analyzed precisely, because of the existence of complex combination of electromagnetics, electrics and dynamic problems. In this study, experimental and theoretical analysis are accomplished for understanding of solenoid valve characteristics and further its design. As the result, the follows are obtained 1) As the increase of wire diameter, the response time became shorter and optimal inductance existed in relative with the response time and wire diameter. 2) According to increasing input voltage, the traction force increased, otherwise the response time was shortened. 3) As the increase of armature stroke, the traction force decreased and the response time became longer.

  • PDF

LPG-DME 성층혼합 압축착화 엔진 (LPG-DME Stratified Charge Compression Ignition Engine)

  • 배충식;염기태
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.672-679
    • /
    • 2007
  • The combustion characteristics of a liquefied petroleum gas-di-methyl ether (LPG-DME) compression ignition engine was investigated under homogeneous charge and stratified charge conditions. LPG was used as the main fuel and injected into the combustion chamber directly. DME was used as an ignition promoter and injected into the intake port. Different LPG injection timings were tested to verify the combustion characteristics of the LPG-DME compression ignition engine. The combustion was divided into three region which are homogeneous charge, stratified charge, and diffusion flame region according to the injection timing of LPG. The hydrocarbon emission of stratified charge combustion was lower than that of homogeneous charge combustion. However, the carbon monoxide and nitrogen oxide emission of stratified charge combustion were slightly higher than those of the homogeneous charge region. The indicated mean effective pressure was reduced at stratified charge region, while it was almost same level as the homogeneous charge combustion region at diffusion combustion region. The start of combustion timing of the stratified charge combustion and diffusion combustion region were advanced compared to the homogeneous charge combustion. It attributed to the higher cetane number and mixture temperature distribution which locally stratified. However, the knock intensity was varied as the homogeneity of charge was increased.

주.보기용 4행정 대형디젤엔진의 IMO운전모드에 따른 배기 배출특성 (The Emission Characteristics of a 4-stroke Large Diesel Engines for Propulsion and Generation Application in IMO modes)

  • 김현규;김규보;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1472-1479
    • /
    • 2002
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke marine diesel engines in E3 cycle (propulsion application) and D2 cycle (generation application). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure on the specific emissions are described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that NOx emission level in E3 cycle is higher than that in D2 cycle due to lower engine speed at low load and the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

선박용 주기용 4행정 디젤엔진의 배기배출물 배출 특성에 관한 실험적 연구 (A Experimental Study on the Emission Characteristics in Stroke Propulsion Diesel Engine for Ship)

  • 김현규;김종기;전충환;장영준
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.121-127
    • /
    • 2002
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

압축착화기관용 가변밸브 듀레이션(VVD)시스템의 제어전략에 따른 유동 및 연소성능 해석 (Flow and Combustion Characteristics according Control Strategy of Variable Valve Duration System for Compression Ignition Engine)

  • 조인수;김우택;이진욱
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.45-50
    • /
    • 2020
  • Recently, global warming and environmental pollution are becoming more important, and fuel economy is becoming important. Each automobile company is actively developing various new technologies to increase fuel efficiency. CVVD(Continuously Variable Valve Duration) system means a device that continuously changes the rotational speed of the camshaft to change the valve duration according to the state of the engine. In this paper, VVT(Variable Valve Timing) and CVVD were applied to a single-cylinder diesel engine, and the characteristics of intake and exhaust flow rate and in-cylinder pressure characteristics were analyzed by numerical analysis. In order to analyze the effect of CVVD on the actual engine operation, the study was performed by setting the valve control and injection pressure as variables in two sections of the engine operating region. As a result, In the case of applying CVVD, the positive overlap with the exhaust valve is maintained, thus it is possible to secure the flow smoothness of air and increase the volumetric efficiency by improving the flow rate. The section 2 condition showed the highest peak pressure, but the pressure rise rate was similar to that of the VVT 20 and CVCD 20 conditions up to 40 bar due to the occurrence of ignition delay.

직접분사식 디젤기관의 연소실내 공기유동강화가 연소과정에 미치는 영향 (The Effect of Combustion Process by Intensifying the Air Flow in Combustion Chamber of D.I. Diesel Engine)

  • 방중철
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.153-159
    • /
    • 2007
  • The performance of a direct-injection type diesel engine often depends on the strength of air flow in the cylinder, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the process of combustion in the cylinder was affected by the mixture formation process. In the present paper, high speed photography was employed to investigate the effectiveness of holes penetrated from the bottom of cavity wall to piston crown for some more useful utilization of air. The holes would function to improve mixing of fuel and air by the increase of air flow in the cylinder. The results obtained are summarized as follows, (1) Activated first of the combustion by shorten of ignition timing and rapid flame propagation (2) Raised the combustion peak pressure, more close to TDC the formation timing of peak pressure.

인젝터 컨트롤러의 개발 (Development of Injector Controller)

  • 조기량
    • 한국전자통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.279-284
    • /
    • 2013
  • 본 논문에서는 경제적이고, 채널 확장성이 용이하며, 다양한 성능시험에 대응이 가능한 솔레노이드 타입의 인젝터 컨트롤러를 연구 개발하고 그 성능을 평가하였다. 개발된 컨트롤러는 임베디드 시스템에 기반을 두고 있으며, 인젝터에서 고압으로 분사되는 연료의 분사 타이밍 및 분사량에 대한 정밀제어는 물론 솔레노이드의 전기적인 특성을 측정하여 인젝터의 성능평가도 가능하다. 또한, 부가적으로 인젝터의 분무 형태를 정밀하게 촬영할 수 있는 광원과 초고속 카메라의 정밀시간제어도 동시에 가능하도록 하였다.