• 제목/요약/키워드: Fuel injection pump

검색결과 96건 처리시간 0.037초

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구 (A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine)

  • 강병무;안현찬;이태원;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

터빈방식 연료펌프로 구성된 LPi 연료공급 시스템의 LPG 조성비에 따른 토출성능 및 엔진적용성에 관한 연구 (The Study of Flow Rate Performance and Engine Application with LPG Composition Rate for LPi Fuel Supplying System Consisted of Turbine Type Pump)

  • 임무창;명차리;박심수;박정남;김성근
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.99-105
    • /
    • 2007
  • Currently, BLDC fuel pump was applied on LPi vehicle using 3rd fuel supply system as liquified phase LPG injection method had already shown better performance than others. Its cost, however, is rather expensive because of drawbacks such as complicated structure, a fault of localization of system. In this work, demonstration system for a developed turbine type fuel pump to replace BLDC system was setup and investigated. This study results that fuel mass flow rate of turbine type pump and injection performance of injector were better compared to BLDC type. Comparing flow rate of summer LPG with that of winter LPG, the flow rate decreased about 25% using winter LPG. Performance applying turbine type LPi fuel pump to engine is confirmed.

터빈방식 펌프 LPi연료공급 시스템의 엔진 고온재시동 시 LPG 조성비에 따른 연료레일에서의 압력 및 온도특성에 관한 연구 (Study on the fuel rail temperature and pressure characteristics with LPG composition during hot restart condition of LPi engine with turbine type pump)

  • 이강주;김주원;명차리;박심수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3323-3328
    • /
    • 2007
  • Conventional LPG pump for Liquified Petroleum injection(LPi) engine has been adopted vane type. But the BLDC type fuel pump for LPi system has complicated structure and its price is high. Therefore, as a alternative, this study has mainly focused on the development of turbine type LPG pump which has lower cost and simple structure than conventional BLDC type. To verify the possibility of substitute the performance tests were performed for each fuel pump. The comparative items were pressure settling time, variation of fuel outlet temperature and engine performance of hot restart ability. As a result, performances of turbine type LPG pump were equivalent or high comparing to the BLDC type all over the tests for different fuel composition.

  • PDF

디젤엔진 연료분사펌프 캐비테이션 손상 방지를 위한 실험적 연구 (Experimental Study for the Prevention of Cavitation Damage in the Diesel Fuel Injection Pumps)

  • 김동훈;박태형;허정윤;류승협;강상립
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2011년도 후기공동학술대회 논문집
    • /
    • pp.61-61
    • /
    • 2011
  • Cavitation phenomena during the injection process of the conventional fuel injection pump for a medium-speed diesel engine can cause surface damage with material removal or round-off on the plunger and barrel port and may shorten their expected life time. An experiment of flow visualization was carried out to investigate the main cause of these cavitation damages and find the prevention method. Experimental results of flow visualization show that these damages are mainly affected by fountain-like cavitation and jet-type cavitation generated before and after the end of fuel delivery process and therefore the prevention method was designed to control these cavitation flows. From the visualization and endurance test, it was proved that this method can effectively prevent cavitation damages by controlling cavitation flows.

  • PDF

박용 대형 저속 디젤기관 연료분사계통의 시뮬레이션에 관한 연구 (A Study on a Simulation of a Fuel Injection System in a Large Low-Speed Marine Diesel Engines)

  • 강정석;이창식;조권회;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.43-52
    • /
    • 2000
  • In this study, a simulation program was developed, which could simulate a fuel injection system for low-speed marine diesel engine. The fuel injection system was divided into fuel injection pump, high pressure pipe and fuel injection valve. The unsteady flow in the high pressure injection pipe was analyzed by the method of characteristics, considering cavitation and variation of fuel density and bulk modulus. It was confirmed that the simulation results were good agree with experimental results of injection pressure and quantity at the high pressure distributor in fuel injection system for the training ship "M/V Hannara". And the effects of the atomizer hole diameter, maximum needle lift, plunger diameter and nozzle opening pressure were also investigated with simulating results.g results.

  • PDF

박용 대형 저속 디젤기관 연료분사계통의 시뮬레이션에 관한 연구 (A Study on the Simulation of the Fuel Injection System in a Large Low-speed marine Diesel Engine)

  • 이창식
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.36-44
    • /
    • 2000
  • In his study the simulation was carried out by simplifing and modeling dividing into fuel injectioin pump high pressure pipe and fuel injection valve in the fuel injection system of a low speed marine diesel engine. A computer simulation model was developed using the method of characteristics to analyze the unsteady flow in the fuel injection system considering cavitation and variation of fuel density and bulk modulus. Comparison was commenced between the calculated data and experimental data of pressure and injection quantity at the high pressure distributor in fuel injection system for the training ship "M/V hanara" the effects of the high pressure pipe length diameter plunger diameter nozzle openning pressure were also investigated by simulating results.g results.

  • PDF

커먼레일 시스템용 저압 유압회로의 성능특성에 관한 연구 (A Study on the Performance Characteristics of Low Pressure Hydraulic Circuit of Common Rail System)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.51-57
    • /
    • 2014
  • High pressure common rail injection technology has revolutionized the diesel industry. Over the last decade it has allowed engine builders to run higher injection pressures as much as above 1,300bar in order to increase engine efficiency, while reducing emissions. This common rail system has low pressure circuit which is consist of low pressure pump, cascade overflow valve and flow metering unit. The low pressure pump's purpose is to feed fuel oil to the high pressure pump. The cascade overflow valve keeps pressure in front of the metering unit constant and provides lubrication for the high pressure pump. The metering unit, known as the MPROP or fuel pressure regulator, regulates the maximum flow rate delivers to the rail. In this paper, we have investigated the performance characteristics of each components and total low pressure circuit of common rail system.

디젤분사계의 특성에 관한 해석적 연구 (An Analytical Study on Characteristics of a Diesel Injection System)

  • 장영준;박호준;전충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.63-74
    • /
    • 1989
  • 디젤기관의 연료분사계는 연소실과 함께 디젤기관의 성능에 가장 큰 영향을 미치는 요소의 하나로 이에 대한 이해는 디젤연소 규명에 있어서 매우 중요하다. 그러나 이분사계는 발화 및 완전연소에 필요한 무화, 공기의 이용율을 증가시키는 관통성 및 분포성등의 요건뿐만 아니라 요구되는 분사율, 2차분사 그리고 분사펌프와의 결합등의 많은 문제와 연관되어 있다. 따라서 본 연구에서는 이와 같이 복잡한 디젤기관의 연료분사계를 단순화시켜서 펌프측, 노즐측 및 분사파이프측의 세부분으로 나누어 모델링하여 해석함으로써 새로운 연료분사계의 개발을 위한 기초연구자료를 구하는 것을 목적으로 하였다. 분사파이프내의 압력과 분사계의 실험을 통하여 본 모델의 타당성을 검토하였으며 각 분사계에 있어서 분사량을 최대로 하는 분사파이프직경이 존재함을 확인할 수 있었다.

  • PDF

자동차용 LPG 펌프의 온도 및 연료조성에 따른 초기토출성능에 관한 연구 (A Study on Performance of Initial Blowoff Flow for a Fuel Pump with Various Temperature and Composition Condition in LPG Engine)

  • 박철웅;김창업;최교남
    • 한국가스학회지
    • /
    • 제12권2호
    • /
    • pp.12-17
    • /
    • 2008
  • 강화되는 배출가스 규제에 대응하기 위한 대책으로 LPG 차량에 적용되고 있는 제3세대 LPG 연료공급방식인 LPLi(Liquid Phase LPG Injection)은 LPG 연료를 펌프를 이용해서 고압의 액상연료를 공급하는 것이 가장 핵심적인 기술이다. 그러나 LPG 연료의 경우 저점도, 저비등점의 물리적 특성을 갖는 가스연료로서 기존의 가솔린 또는 디젤용 펌프를 사용할 경우 성능 및 효율이 달라질 수 있다. 본 연구에서는 가솔린 연료 펌프의 임펠라 방식을 응용 변형시켜서 LPG연료용으로 개발된 펌프를 이용하여 다양한 온도와 연료조성 조건에서 초기토출성능 및 효율을 파악하고, 기존 펌프의 단점을 극복할 수 있는 펌프방식의 적용가능성 여부를 판단하고자 한다.

  • PDF

Improvement of Lubrication Characteristics in Fuel Injection Pump for Medium-Speed Diesel Engines: Part I - Application of Profile Shape

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • 제31권5호
    • /
    • pp.205-212
    • /
    • 2015
  • In this research, effects of profile changes of stem section of the plunger on the lubrication characteristics of a fuel injection pump (FIP) were evaluated by hydrodynamic lubrication analysis. The clearance between plunger and barrel was divided into two regions, head and stem. The head was not involved in preventing a decrease of fuel oil pressure. So, research efforts were focused on both edges of the plunger’s stem. The two -dimensional Reynolds equation was used to evaluate lubrication characteristics with variations in viscosity, clearance and profile for a laminar, incompressible, unsteady-state flow. Moreover, the equilibrium equation of moment and forces in the vertical and horizontal directions were used to determine the motion of the plunger. The equations were discretized using the finite difference method. Lubrication characteristics of the FIP were investigated by comparing the dimensionless minimum film thickness, or film parameter, which is the ratio of minimum film thickness to surface roughness. Through numerical analyses, we showed that the profile of the lower edge of the stem had no effect on lubrication characteristics, but the profile of the upper edge had a significant influence on lubrication characteristics. In addition, changes in the profile were more effective in improving lubrication characteristics under low viscosity conditions.