• Title/Summary/Keyword: Fuel elements

Search Result 356, Processing Time 0.023 seconds

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) inorganic composite: Part 1. Dechlorination Behavior of LiCl-KCl and Characteristics of Consolidation (SiO2-Al2O3-P2O5 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 1. LiCl-KCl의 탈염화 반응거동 및 고형화특성)

  • Cho, In-Hak;Park, Hwan-Seo;Ahn, Soo-Na;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • The metal chloride wastes from a pyrochemical process to recover uranium and transuranic elements has been considered as a problematic waste difficult to apply to a conventional solidification method due to the high volatility and low compatibility with silicate glass. In this study, a dechlorination approach to treat LiCl-KCl waste for final disposal was adapted. In this study, a $SiO_2-Al_2O_3-P_2O_5$ (SAP) inorganic composite as a dechlorination agent was prepared by a conventional sol-gel process. By using a series of SAPs, the dechlorination behavior and consolidation of reaction products were investigated. Different from LiCl waste, the dechlorination reaction occurred mainly at two temperature ranges. The thermogravimetric test indicated that the first reaction range was about $400^{\circ}C$ for LiCl and the second was about $700^{\circ}C$ for KCl. The SAP 1071 (Si/Al/P=1/0.75/1 in molar) was found to be the most favorable SAP as a dechlorination agent under given conditions. The consolidation test revealed that the bulk shape and the densification of consolidated forms depended on the SAP/Salt ratios. The leaching test by PCT-A method was performed to evaluate the durability of consolidated forms. This study provided the basic information on the dechlorination approach. Based on the experimental results, the dechlorination method using a $SiO_2-Al_2O_3-P_2O_5$ (SAP) could be considered as one of alternatives for the immobilization of waste salt.

Electrochemical Decontamination of Metallic Wastes Contaminated with Uranium Compounds (우라늄화합물로 오염된 금속폐기물의 전해제염)

  • 양영미;최왕규;오원진;유승곤
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.11-23
    • /
    • 2003
  • A study on the electrolytic dissolution of SUS-304 and Inconel-600 specimen was carried out in neutral salt electrolyte to evaluate the applicability of electrochemical decontamination process for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant in Korea. Although the best electrolytic dissolution performance for the specimens was observed in a Na2s04 electrolyte, a NaNO$_3$ neutral salt electrolyte, in which about 30% for SUS-304 and the same for Inconel-600 in the weight loss was shown in comparison with that in a Na$_2$SO$_4$ solution, was selected as an electrolyte for the electrochemical decontamination of metallic wastes with the consideration on the surface of system components contacted with nitric acid and the compatibility with lagoon wastes generated during the facility operation. The effects of current density, electrolytic dissolution time, and concentration of NaNO$_3$ on the electrolytic dissolution of the specimens were investigated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO$_2$, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion facility were performed in 1M NaNO$_3$ solution with the current density or In mA/$\textrm{cm}^2$. it was verified that the electrochemical decontamination of the metallic wastes contaminated uranium compounds was quite successful in a NaNO$_3$ neutral salt electrolyte by reducing $\alpha$ and $\beta$ radioactivities below the level of self disposal within 10 minutes regardless of the type of contaminants and the degree of contamination.

  • PDF

Technical Standards and Safety Review of the Low and Intermediate Level Radioactive Waste Disposal Facility (중.저준위 방사성폐기물 처분시설에 대한 기술기준 및 안전심사)

  • Cheong, Jae-Hak;Lee, Kwan-Hee;Lee, Yun-Keun;Jeong, Chan-Woo;Rho, Byung-Hwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.357-368
    • /
    • 2008
  • On July 31, 2008, the Government issued the construction and operation permit for the first low and intermediate level radioactive waste disposal facility in the Republic of Korea. In this paper, the fundamental regulatory framework, regulatory requirements and technical standards of the disposal facility are introduced, and the phased review process adopted for evaluation of the safety of the facility is briefly described. The Atomic Energy Act sets forth a stepwise regulatory framework for the whole life-cycle of the disposal facility such as siting, design, construction, operation, closure and institutional control. More detailed regulatory requirements and technical standards are stipulated in the subsequent regulations of the Atomic Energy Act and a series of Notices issued by the Ministry of Eduction, Science and Technology. The Korea Institute of Nuclear Safety, as entrusted by the Ministry under the Atomic Energy Act, conducted safety review on the disposal facility, and evaluated the compliance with relevant criteria in all technical elements(i.e. siting and structural safety, radiological environmental impact, operational safety, systems and components, quality assurance, and total systematic performance assessment, etc.). The overall safety review process can be phased into inception phase, initial review phase, main review phase and completion phase. The review results were reported to and deliberated by the five Sub-committees of the Special Committee on Nuclear Safety, and then reported to the Ministry. The Ministry issued the construction and operation permit of the disposal facility through the deliberation of the review results by the Nuclear Safety Commission. Hereafter, the safety of the repository will be reassured by a series of subsequent regulatory inspections and reviews under the Atomic Energy Act. In addition, the licensee's continuous implementation of the "Safety Promotion Plan" may also enhance the long-term safety of the repository and contribute to build-up the confidence of the safety case.

  • PDF

Development of Liquid Cadmium Cathode Structure for the Inhibition of Uranium Dendrite Growth (수지상 우라늄 성장억제를 위한 액체카드뮴 음극구조 개발)

  • Paek, Seung-Woo;Yoon, Dal-Seong;Kim, Si-Hyung;Shim, Jun-Bo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • The LCC (Liquid Cadmium Cathode) structure to be developed for inhibiting the formation and growth of the uranium dendrite has been known as a key part in the electrowinning process for the simultaneous recovering of uranium and TRU (TRans Uranium) elements from spent fuels. A zinc-gallium (Zn-Ga) experimental system which is able to be functional in aqueous condition and normal temperature has been set up to observe the formation and growth phenomena of the metal dendrites on liquid cathode. The growth of the zinc dendrites on the gallium cathode and the performance of the existing stirrer type and pounder type cathode structure were observed. Although the mechanical strength of the dendrites appeared to be weak in the electrolyte and easily crashed by the various cathode structures, it was difficult to effectively submerge the dendrite into the bottom of the liquid cathode. Based on the results of the aqueous phase experiments, a lab-scale electrowinning experimental apparatus which are applicable to the development of LCC srtucture for the electrowinning process was established and the performance tests of the different types of LCC structure were conducted to prohibit the uranium dendrite growth on LCC surface. The experimental results of the stirrer type LCC structures have shown that they could not effectively remove the uranium dendrites growing at the inner side of the LCC crucible and the performances of the paddle and harrow type LCC structure were similar. Therefore a mesh type LCC structure was developed to push down the uranium dendrites to the bottom of the LCC crucible growing on the LCC surface and at the inner side of the crucible. From the experimental results for the performance test of the mesh type LCC structure, the uranium was recovered over 5 wt% in cadmium without the growth of uranium dendrites. After completion of the experiments, solid precipitates of the bottom of the LCC crucible were identified as an intermetallic compound (UCd11) by the chemical analysis.

The Characteristics of an Oxidative Dissolution of Simulated Fission Product Oxides in $(NH_4)_2CO_3$ Solution Containing $H_2O_2$ ($H_2O_2$ 함유 $(NH_4)_2CO_3$ 용액에서 모의 FP-산화물의 산화용해 특성)

  • Lee, Eil-Hee;Lim, Jae-Gwan;Chung, Dong-Yong;Yang, Han-Beum;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This study has been carried out to look into the characteristics of an oxidative-dissolution of fission products (FP) co-dissolved with uranium (U) in a $(NH_4)_2CO_3$ carbonate solution. Simulated FP-oxides which contained 12 components have been added to the solution to examine their dissolution characteristics. It is found that $H_2O_2$ is an effective oxidant to minimize the oxidative-dissolution of FP. In the 0.5 M $(NH_4)_2CO_3$-0.5 M $H_2O_2$ solution, some elements such as Re, Te, Cs and Mo seem to be dissolved together with U, while 98${\pm}$2% for Re and Te, 94${\pm}$2% for Cs, and 29${\pm}$2 % for Mo are dissolved for 2 hours. It is revealed that dissolution rates of Re, Te and Cs are high (completely dissolved within 10${\sim}$20 minutes) due to their high solubility in the $(NH_4)_2CO_3$ solution regardless of the addition of $H_2O_2$, and independent of the concentrations of $Na_2CO_3$ and $H_2O_2$. However, the dissolution ratio of Mo seems to be slightly increased with time and about 33 % for 4 hours, indicating a very slow dissolution rate and also independent of the $(NH_4)_2CO_3$ concentration. It is found that the most important factor for the oxidative-dissolution of FP is the pH of the solution and an effective dissolution is achieved at a pH between 9${\sim}$10 in order to minimize the dissolution of FP.

  • PDF

The Absorption and Purification of Air Pollutants and Heavy Metals by Selected Trees in Kwangju (광주지역(光州地域)에서 주요(主要) 수목(樹木)의 대기오염물질(大氣汚染物質)과 중금속(重金屬) 흡수(吸收) 정화기능(淨化機能)에 관(關)한 연구(硏究))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.510-522
    • /
    • 1999
  • The air pollutants ; $SO_2$, $SO{_4}^{-2}$, $NO{_3}^-$, $Cl^-$ are absorbed into soils through falling with dusts and rain from the atmosphere. The sources of heavy metal contaminants in the environments are agricultural and horticultural materials, sewage sludges, fossil fuel combustion, metallurgical industries, electronics and waste disposal etc.. The soils and hydrosphere can be polluted on the way of the circulation of these heavy metals. Studied pollutant anions are $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ and heavy metals are Se, Mo, Zn, Cd, Pb, Mn, Cr, Co, V, As, Cu and Ni which are the elements to be concerned with the essentials for plants, with animal and human health. This study is with the aim of selecting the species of roadside trees and green space trees which have excellent absorption of air pollutants and heavy metals from the atmosphere and the soils in the urban area. Two areas are designated to carry out this study : urban area ; Kwangju city and rural area ; the yard of Forest Environment Institute of Chollanam-do, at Sanje-ri, Sampo-myum, Naju city, Chollanam-do (23km away from Kwangju). This study is carried out to understand the movement of anions and heavy metals from the soils to the trees in both areas, the absorption of anions and heavy metals from atmosphere into leaves and the amounts of anions and heavy metals in leaves and fine roots(< 1mm dia.) of roadside trees and green space trees in Kwangju and trees in the yard of Forest Environment Institute of Chollanam-do. The tree species selected for this study in both areas are Ginkgo biloba, Quercus acutissima, Cedrus deodara, Platanus occidentalis, Robinia pseudoacacia, Alnus japonica. Metasequoia glyptostroboides. Zekova serrata. Prunus serrulata var. spontanea, and Pinus densiflora. The results of the study are as follows : 1. $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ concentrations are higher in the soils of the urban area than in those of the rural area, and $NO{_3}^-$ and $SO{_4}^{-2}$ are higher in the leaves than in the roots due to the absorption of the these pollutants through the stomata. 2. Ginkgo biloba, Robinia pseudoacacia. Zekova serrata, Quercus acutissima, and Platanus occidentalis can be adequated to the roadside trees and the environmental trees due to their good absorption of $NO{_3}^-$ and $SO{_4}^{-2}$. 3. Heavy metals in the soils of both areas are in the order of Mn > Zn > V > Cr > Pb > Ni > Cu > Mo> Cd, and in the leaves and roots of the trees in the both areas are in the order of Mn>Zn>Cr>Cu>V>Ni. Both orders are similar ones except V. There are more in the urban soils than in the rural soils in amount of Mn, Zn, Pb, V, Cu. 4. It is supposed that there is no antagonism between Mn and Zn in this study. 5. Se, Co and As are not detected in the soils, the leaves and the roots in both areas. Sn, Mo, Cd and Pb are also not detected in the leaves and roots in spite of considerable amount in the soils of both areas.

  • PDF