• Title/Summary/Keyword: Fuel cost minimization

Search Result 23, Processing Time 0.026 seconds

A novel approach for optimal DG allocation in distribution network for minimizing voltage sag

  • Hashemian, Pejman;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.55-73
    • /
    • 2019
  • The cost incurred by voltage sag effect in power networks has always been of important concern for discussions. Due to the environmental constraints, fossil fuel shortage crisis and low efficiency of conventional power plants, decentralized generation and renewable based DG have become trends in recent decades; because DGs can reduce the voltage sag effect in distribution networks noticeably; therefore, optimum allocation of DGs in order to maximize their effectiveness is highly important in order to maximize their effectiveness. In this paper, a new method is proposed for calculating the cost incurred by voltage sag effect in power networks. Thus, a new objective function is provided that comprehends technical standards as minimization of the cost incurred by voltage sag effect, active power losses and economic criterion as the installation and maintenance costs of DGs. Considering operational constraints of the system, the optimum allocation of DGs is a constrained optimization problem in which Lightning Attachment procedure optimization (LAPO) is used to resolve it and is the optimum number, size and location of DGs are determined in IEEE 33 bus test system and IEEE 34 bus test system. The results show that optimum allocation of DGs not only reduces the cost incurred by voltage sag effect, but also improves the other characteristics of the system.

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

The Best Generation Mix considering CO2 Air Pollution Constraint ($CO_2$ 배출량제약을 고려한 최적전원구성)

  • Lee, Sang-Sik;Tran, TrungTinh;Kwon, Jung-Ji;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.149-151
    • /
    • 2005
  • A new approach considering CO2 air pollution constraints in the long-term generation mix is proposed under uncertain circumstances. A characteristic feature of the presented approach in this paper is what effects give the air pollution constraints in long term best generation mix. Best generation mix problem is formulated by linear programming with fuel and construction cost minimization with load growth, reliability (reserve margin rate) and air pollutionconstraints. The proposed method accommodates the operation of pumped-storage generator. It was assumed in this study that the construction planning of the hydro power plants is given separately from the other generation plans. The effectiveness of the proposed approach is demonstrated by applying to the best generation mix problem of KEPCO-system, which contains nuclear, coal, LNG, oil and pumped-storage hydro plant multi-years.

  • PDF

Optimal Power Flow Considering Price Elasticity of Customer (소비자의 가격탄력성을 고려한 최적조류계산)

  • Joung, Sang-Houn;Shin, Young-Gyun;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.372-374
    • /
    • 2002
  • The Optimal Power Flow(OPF) is the optimization model that has different constraints and the specified objective function, which is very useful tool for efficient system and market operation in the competitive electricity market. The existed OPF models focus on the minimization of generation fuel cost under informed demand values at each bus Recently, the studies of OPF model with demand function considering the response behavior of customers in the deregulated electricity market have been executed. This paper implements the OPF model using demand function with specified price elasticity, and provides the analysis of related results.

  • PDF

국내 화력발전산업의 연료의 효율적 배분과 CO2 저검규모 추정

  • Lee, Myeong-Heon
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.3-25
    • /
    • 2012
  • Generally speaking, firms, faced with a regulatory environment, are likely to use more or less inputs than optimal level due to allocative inefficiency of inputs. This paper, first, tests allocative efficiency of fuel inputs and calculates the divergence between the actual and optimal levels of each fuel input conditional on the optimal level of capital stock in Korean thermal power industry. Then, given that each fuel is efficiently allocated. potential reduction of $CO_2$ is estimated over the period 1987~2008. The null hypothesis of allocative efficiency with respect to all fuels is rejected, indicating that thermal power plants fail to attain cost minimization subject do market prices. Allocative efficiency between each pair of fuels is also tested; efficient uses of fuels relative to each other are all rejected. Empirical results indicate that coal and gas are used more and oil is used less than optimal level. On average, more than 10 million tons of $CO_2$ per year could be reduced by achieving allocative efficiency of fuels.

  • PDF

An Operation Scheduling of Transporters Considering Turns and Passing Delay at the Intersection Roads on the Shipyard (교차로 구간 회전 및 감속을 고려한 트랜스포터 최소 공주행 운영계획)

  • Moon, Jong-Heon;Ruy, Won-Sun;Cho, Doo-Yeoun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.187-195
    • /
    • 2017
  • The operation planning of transports used to move blocks is the one of key factors. Furthermore, reducing the running time through the effective plan contributes to pulling forward the whole logistic process of the shipyard and substantially saving the fuel consumption of itself as well. The past researches of the transporter focused on finding only the shortest distances, so called, Manhattan distance. However, these searching approaches cannot help having the significant difference in the real operational time and distance with the minimum cost approach which considers the speed retardation for turns or safety at the intersection. This study suggests the noble transporter's operational model which could take account of the consuming operational time around the crossroads on the shipyard. Concretely, the proposed method guarantees the minimization of transporters' turns and passage number which are huge burdensome to the operation time and the whole planning of transports with the given period. Resultantly, this paper is willing to explain the appropriateness of our approach, compared with the previous ones.

Analytical Prediction of Bearing Life and Load Distribution for Plugin HEV (플러그인 HEV용 베어링 수명 및 응력분포의 분석예측)

  • Zhang, Qi;Kang, Jae-Hwa;Yun, Gi-Baek;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-7
    • /
    • 2012
  • The transportation is almost dependent on a single fuel petroleum with transportation energy dilemma. Hybrid Electric Vehicle(HEV) technology holds more advantages on efficiency improvements for petroleum consumption at the transportation. And bearing is recognized as the important component of gearbox. Gearboxes for HEV transmission have been ensured the highest reliability over some years in withstanding high dynamic loads. At the same time, the demands of lightweight design and cost minimization are required by thought-out design, high-quality material, superior production quality and maintenance. In order to design a reliable and lightweight gearbox, it is necessary to analyze bearing rating life methods between standard and different bearing companies with calculation methods for modification factors. In this paper, the influence of life time of bearings will be pointed out. Bearing contact stress and load stress distribution of HEV gearbox are obtained and compared with Romaxdesigner and BearinX. And the unequal wear of the left bearing for the gearbox intermediate shaft is investigated between simulation and test.

Analytical Prediction of Bearing Life and Load Distribution for Plugin HEV (플러그인 HEV용 베어링 수명 및 응력분포의 분석예측)

  • Zhang, Qi;Kang, Jae-Hwa;Yun, Gi-Baek;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.25-30
    • /
    • 2012
  • The transportation is almost dependent on a single fuel petroleum with transportation energy dilemma. Hybrid Electric Vehicle(HEV) technology holds more advantages on efficiency improvements for petroleum consumption at the transportation. And bearing is recognized as the important component of gearbox. Gearboxes for HEV transmission have been ensured the highest reliability over some years in withstanding high dynamic loads. At the same time, the demands of lightweight design and cost minimization are required by thought-out design, high-quality material, superior production quality and maintenance. In order to design a reliable and lightweight gearbox, it is necessary to analyze bearing rating life methods between standard and different bearing companies with calculation methods for modification factors. In this paper, the influence of life time of bearings will be pointed out. Bearing contact stress and load stress distribution of HEV gearbox are obtained and compared with Romaxdesigner and BearinX. And the unequal wear of the left bearing for the gearbox intermediate shaft is investigated between simulation and test.

A Study on Dry Bulkers' Optimal Deadweight and Speed under Certain Available Cargo Lot Sizes (선적화물량에 따른 살적화물선의 최적적화중량준 및 속력의 결정에 관한 연구)

  • 이명진
    • Journal of the Korean Institute of Navigation
    • /
    • v.8 no.1
    • /
    • pp.17-48
    • /
    • 1984
  • The economy of ship's size and speed is affected by the freight rates, sailing distances, cargo handling rates, fuel oil prices and even interest rates of the borrowed funds. It can be a step more powerful measures if the economic evaluation model takes in a cargo lot size which prevails in the shipping markets. This paper has dealt with hypothetical cargo lots which happen to the market with uniform distribution in probability. The evaluation models are either profit maximization method or cost minimization method. The former compares among different voyages in profitability to the invested funds, the later defines the transportation efficiency in ton-mile unit and be used in comparing two or more transportation means. This paper adopted both of above methods to derive out ships economical evaluation contours for the various ship's speed and deadweight for certain cargo lot sizes, which can be used as important managerial decision data in purchasing ships or selecting a most profitable one among the proposed voyages. This evaluation contours will also be efficiently used in appraising so called "handy size ships" in connection with port water depth and conditions of voyage tracks.ge tracks.

  • PDF

RPSMDSM: Residential Power Scheduling and Modelling for Demand Side Management

  • Ahmed, Sheeraz;Raza, Ali;Shafique, Shahryar;Ahmad, Mukhtar;Khan, Muhammad Yousaf Ali;Nawaz, Asif;Tariq, Rohi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2398-2421
    • /
    • 2020
  • In third world countries like Pakistan, the production of electricity has been quickly reduced in past years due to rely on the fossil fuel. According to a survey conducted in 2017, the overall electrical energy capacity was 22,797MW, since the electrical grids have gone too old, therefore the efficiency of grids, goes down to nearly 17000MW. Significant addition of fossil fuel, hydro and nuclear is 64.2%, 29% and 5.8% respectively in the total electricity production in Pakistan. In 2018, the demand crossed 20,223MW, compared to peak generation of 15,400 to 15,700MW as by the Ministry of Water and Power. Country faces a deficit of almost 4000MW to 5000MW for the duration of 2019 hot summer term. Focus on one aspect considering Demand Side Management (DSM) cannot oversea the reduction of gap between power demand and customer supply, which eventually leads to the issue of load shedding. Hence, a scheduling scheme is proposed in this paper called RPSMDSM that is based on selection of those appliances that need to be only Turned-On, on priority during peak hours consuming minimum energy. The Home Energy Management (HEM) system is integrated between consumer and utility and bidirectional flow is presented in the scheme. During peak hours of electricity, the RPSMDSM is capable to persuade less power consumption and accomplish productivity in load management. Simulations show that RPSMDSM scheme helps in scheduling the electricity loads from peak price to off-peak price hours. As a result, minimization in electricity cost as well as (Peak-to-Average Ratio) PAR are accomplished with sensible waiting time.