• Title/Summary/Keyword: Fuel consumption analysis method

Search Result 103, Processing Time 0.025 seconds

Effect on the Fuel Economy by Gradient in Automobile Driveway (자동차 전용도로에서 경사가 연비에 미치는 영향)

  • Choi, Seong-Cheol;Oh, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2925-2930
    • /
    • 2011
  • A vehicle fuel economy is very important issue in the view of fuel cost and environmental regulation. The fuel economy is much improved according to the development of electric, electronic and mechanical technology, but up to now the measurement of it tests the given mode(LA-4, FTP-75, etc) within computer simulation program and engine dynamometer. This fuel economy is different with it of real road. The one of main reason is not considered the gradient of the road. To estimate the effects of fuel economy at highway with gradient in this paper, we measure the amount of fuel consumption and calculate the fuel economy of it with running the Youngdong highway with high gradient. Also this paper analysis and compares the fuel economy with gradient and without gradient when the vehicle runs the same driveway. Then we calculate the total energy created the difference of fuel consumption amount of the two cases and calculate the consumpted energy by tire driving force from the torque and power of engine in the simulation. This paper verifies the relation of the driving force and the total energy by creating the difference of fuel consumption amount. This paper also proposes the method of fuel economy improvement despite of gradient at the result.

Implementation of functional expansion tally method and order selection strategy in Monte Carlo code RMC

  • Wang, Zhenyu;Liu, Shichang;She, Ding;Su, Yang;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.430-438
    • /
    • 2021
  • The spatial distribution of neutron flux or reaction rate was calculated by cell or mesh tally in traditional Monte Carlo simulation. However, either cell or mesh tally leads to the increase of memory consumption and simulation time. In this paper, the function expansion tally (FET) method was developed in Reactor Monte Carlo code RMC to solve this problem. The FET method was applied to the tallies of neutron flux distributions of uranium block and PWR fuel rod models. Legendre polynomials were used in the axial direction, while Zernike polynomials were used in the radial direction. The results of flux, calculation time and memory consumption of different expansion orders were investigated, and compared with the mesh tally. Results showed that the continuous distribution of flux can be obtained by FET method. The flux distributions were consistent with that of mesh tally, while the memory consumption and simulation time can be effectively reduced. Finally, the convergence analysis of coefficients of polynomials were performed, and the selection strategy of FET order was proposed based on the statistics uncertainty of the coefficients. The proposed method can help to determine the order of FET, which was meaningful for the efficiency and accuracy of FET method.

A Quantitative Analysis of Greenhouse Gas Emissions from the Danish Seine Fishery using Life Cycle Assessment (전과정평가 방법에 의한 외끌이 대형기선저인망 어업의 온실 가스 배출량의 정량적 분석)

  • Lee, Jihoon;Lee, Chun-Woo;Kim, Jieun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.200-206
    • /
    • 2015
  • The fishing industry has a negative effect on the environment due to greenhouse gas (GHG) emissions with the high use of fossil fuels, the destruction of underwater ecosystems by bottom trawls, reduction in resources by fishing, and altered ecosystem diversity. GHG emissions from fisheries were discussed at the Canc$\acute{u}$n meeting in Mexico in 1992 and are part of the Kyoto protocol in 2005. However, few studies have investigated the GHG emissions from Korean fisheries. To find a way to reduce GHG emissions from fisheries, quantitative analysis of GHG emissions from the Korean fishery industry is needed. Therefore, this study investigated the GHG emissions from the Korean Danish seine fishery using the life cycle assessment (LCA) method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel-use coefficient of the fishery is also calculated. The GHG emissions from the representative fish caught by the Danish seine fishery are considered and the GHG emissions for the edible weight of fishes are calculated, considering consumption in different areas and different slaughtering processes. The results will help to understand the GHG emissions from Korean fisheries.

Misfire Detection of a Gasoline Engine by Analysis of the Variation of Pressure in the Exhaust Manifold (배기관 내 압력 변동 분석에 의한 가솔린 기관의 실화 검출)

  • 심국상;복중혁;김세웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.1-8
    • /
    • 1999
  • This paper describes the method for detection of the misfired cylinder by analysis of the variation of pressure occurred in exhaust manifold on an MPI gasoline engine. Misfired cylinder(s) cause a loss of power, an increase of fuel consumption and exhaust emission and vibration is caused by unsteady torque. Therefore early detection and correction of misfired cylinder(s) play a very important role in the proper performance and the exhaust emission. The method is a comparison of integration pressure index during the period of a blowdown in the displacement period. Experimental results showed that the method, using the variation of pressure in the exhaust manifold is proven to be effective in the detection of single cylinder or multiple cylinders misfire on the gasoline engine regardless of the engine revolutions. In addition, this method, using the variation of pressure in the exhaust manifold is a very easy and accurate method compared with other methods.

  • PDF

Analysis on Application of Flywheel Energy Storage System for offshore plants with Dynamic Positioning System

  • Jeong, Hyun-Woo;Kim, Yoon-Sik;Kim, Chul-Ho;Choi, Sung-Hwan;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.935-941
    • /
    • 2012
  • This paper describes a study of conventional electrical rig and simulated application of Flywheel Energy Storage system on the power system of the offshore plants with dynamic positioning system with the following aims: improve fuel consumption on engines, prevent blackout and mitigate voltage sags due to pulsed load and fault. Fuel consumption has been analyzed for the generators of the typical drilling rigs compared with the power plant with Flywheel Storage Unit which has an important aid in avoiding power interruption during DP (Dynamic Positioning) operation. The FES (Fly wheel Energy storage System) releases energy very quickly and efficiently to ensure continuity of the power supply to essential consumers such as auxiliary machinery and thrusters upon main power failure. It will run until the standby diesel generator can start and supply the electric power to the facilities to keep the vessel in correct position under DP operation. The proposed backup method to utilize the quick and large energy storage Flywheel system can be optimized in any power system design on offshore plant.

Correction of Aircraft Empty Weight CG due to LRU Modification (구성품 변경에 따른 항공기 공허중량 무게중심 수정 및 검증)

  • Lee, Jin-Won;Kwon, Na-Eun;Kim, Ji-Hong;Park, Jae Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.551-557
    • /
    • 2022
  • LRU (Line Replacement Unit) modifications are often required for military aircraft due to aging. Recently, LRU modifications were proceeded for KA-O (Armed Airborne Controller) by replacing the ejection seat and adding avionic equipment, which made the aircraft's operational CG (Center of Gravity) on fuel consumption curve become out of the range of the specification requested. The off-ranged CG should be corrected by introducing an appropriate method. This study proposes a procedure for revising and verifying the empty weight CG altered due to LRU modification for small military aircraft (e.g., KA-O). In the proposed method, first, the change of empty weight CG of KA-O due to the LRU modifications is comprehensively examined. Then, several ballast masses are added to the engine mount strut to restore the empty weight CG on the fuel consumption curve to a safe operational range. The installations are verified via stress and fatigue analysis for various operating conditions. Considering that open information is not very available for the revision of empty weight CG, this study is valuable because it presents an established procedure for correcting and verifying empty weight CG during aircraft modification.

Low Thrust, Fuel Optimal Earth Escape Trajectories Design (저추력기를 이용한 연료 최적의 지구탈출 궤적 설계 연구)

  • Lee, Dong-Hun;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.647-654
    • /
    • 2007
  • A Discrete continuation Method/homotopy approaches are studied for energy/fuel optimal low thrust Earth escape trajectory by solving a two point boundary value problem(TPBVP). Recently, maneuvers using low thrust propulsion system have been identified as emerging technologies. The low thruster is considered as the main actuator for orbit maneuvers. The cost function consists of a energy/fuel consumption function, and constraints are position and velocity vectors at the terminal escape point. Solving the minimum energy/fuel problem directly is not an easy task, so we adopt the homotopy analysis. Using a solution of the minimum energy, which is solved by discrete continuation method, we obtain the solution of the minimum fuel problem.

Comparing Methodology of Building Energy Analysis - Comparative Analysis from steady-state simulation to data-driven Analysis - (건물에너지 분석 방법론 비교 - Steady-state simulation에서부터 Data-driven 방법론의 비교 분석 -)

  • Cho, Sooyoun;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.77-86
    • /
    • 2017
  • Purpose: Because of the growing concern over fossil fuel use and increasing demand for greenhouse gas emission reduction since the 1990s, the building energy analysis field has produced various types of methods, which are being applied more often and broadly than ever. A lot of research products have been actively proposed in the area of the building energy simulation for over 50 years around the world. However, in the last 20 years, there have been only a few research cases where the trend of building energy analysis is examined, estimated or compared. This research aims to investigate a trend of the building energy analysis by focusing on methodology and characteristics of each method. Method: The research papers addressing the building energy analysis are classified into two types of method: engineering analysis and algorithm estimation. Especially, EPG(Energy Performance Gap), which is the limit both for the existing engineering method and the single algorithm-based estimation method, results from comparing data of two different levels- in other words, real time data and simulation data. Result: When one or more ensemble algorithms are used, more accurate estimations of energy consumption and performance are produced, and thereby improving the problem of energy performance gap.

Semi-quantitative Risk Assessment using Bow-tie Method for the Establishment of Safety Management System of Hydrogen Fuel Storage Facility in a Combined Cycle Power Plant (복합화력발전소 내 수소연료 저장설비의 안전관리 체계 구축을 위한 Bow-tie 기법을 활용한 반정량적 위험성 평가)

  • Hee Kyung Park;Si Woo Jung;Yoo Jeong Choi;Min Chul Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.75-86
    • /
    • 2024
  • Hydrogen has been selected as one of the key technologies for reducing CO2 emissions to achieve carbon neutrality by 2050. However, hydrogen safety issues should be fully guaranteed before the commercial and widespread utilization of hydrogen. Here, a bow-tie risk assessment is conducted for the hydrogen fuel supply system in a gas turbine power plant, which can be a mass consumption application of hydrogen. The bow-tie program is utilized for a qualitative risk assessment, allowing the analysis of the causes and consequences according to the stages of accidents. This study proposed an advanced bow-tie method, which includes the barrier criticality matrix and visualized maps of quantitative risk reduction. It is based on evaluating the importance of numerous barriers for the extent of their impact. In addition, it emphasizes the prioritization and concentrated management of high-importance barriers. The radar chart of a bow tie allows the visual comparison of risk levels before/after the application of barriers (safety measures). The risk reduction methods are semi-quantitatively analyzed utilizing the criticality matrix and radar chart, and risk factors from multiple aspects are derived. For establishing a secure hydrogen fuel storage system, the improvements suggested by the bow-tie risk assessment results, such as 'Ergonomic equipment design to prevent human error' and 'Emergency shutdown system,' will enhance the safety level. It attempts to contribute to the development and enhancement of an efficient safety management system by suggesting a method of calculating the importance of barriers based on the bow-tie risk assessment.

A Study on the Spray Chracteristics for a Gasoline Direct Injector by Using Entropy Analysis and PIV Methods (엔트로피 해석과 PIV를 이용한 직접 분사식 가솔린의 분무 특성에 관한 연구)

  • Woo, Young-Wan;Lee, Chang-Hee;Lee, Ki-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1047-1054
    • /
    • 2002
  • To improve the fuel consumption and exhaust emission for gasoline engines, GDI(Gasoline Direct Injection) system was spotlighted to solve above requirements. Thus, many researchers have been studied to investigate the spray characteristics and the mixture formation of GDI injector. In this study, we tried to study the spray characteristics of a gasoline direct injector by using entropy analysis and PlV methods. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. The PlV method was adopted to determine the fluid dynamics information at the spray. From the applied results on a direct injection gasoline spray, we could find that the direct diffusion phenomena was a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially under vaporizing ambient conditions, and mixing phenomena was also progressed by momentum exchange with induced air. In addition, the correlation between entropy and vorticity strength enabled to find their relation.