Sung, Chul Hoon;Han, Sung Gil;Kim, Sung Hoon;Song, Chul Ki
Journal of the Korean Society of Manufacturing Process Engineers
/
v.18
no.6
/
pp.98-105
/
2019
In order to improve the fuel economy and dynamic behavior of automobiles, the weight reduction tendency of automobile parts is obvious. Also, in order to maximize assembly and maintenance convenience, various parts are integrated and modularized. Multi-piece methods require many manufacturing processes and become a factor of lowering the strength of parts. It is advantageous to overcome the disadvantages by integrally manufacturing to reduce the processing steps and ensure the strength of the parts. However, when it is necessary to process in a narrow space inside the part, it is impossible to process with the existing spindle. The angle head spindle is only a component of a machine tool, but it is a core part that requires high technology and is highly utilizable in products requiring high precision machining. Therefore, various and continuous studies needs for angle head spindles in areas such as vibration absorption, operational safety, excellent dimensional stability, and strength. In this paper, we propose an optimal design for angle head spindle by performing structural analysis and shape optimization for angle head spindle gear and case.
Ha, Donghwi;Roh, Tae-Seong;Lee, Hyoung Jin;Yoo, Phil Hoon
Journal of the Korean Society of Propulsion Engineers
/
v.24
no.5
/
pp.21-33
/
2020
In this study, the program for system analysis of an expander cycle rocket engine using liquid hydrogen as a fuel was developed. The properties of hydrogen were considered by the ratio of isomers with temperature. The analysis procedure was established with the open and closed types of the expander cycle engine and the simulation methods were suggested for each component. To validation of the analysis program, we compared the performance of the engine operating point and the analysis results performed overseas for Vinci and SE-21D, which are expander cycle engines. As a result of the analysis, the main performance factors of the system, such as the mass flow of the propellant, specific thrust, and power, except for some of the inaccurate input information, showed high accuracy with an error of around 1-2%.
Carthamus tinctorius L. (known as safflower) is a valuable oil plant whose importance is increasing rapidly in the world due to its high adaptation to arid regions. The seeds of this unique plant are especially used in edible oil, soap, paint, varnish and lacquer production. Its flowers are used in vegetable dye production and medicinal purposes beside its features as a coloring and flavoring in food. After the oil is removed, the remaining pulp and plant parts are used as animal feed, and dry straw residues are used as fuel. Beside all these features, its usage as a herbal medicinal plants for various diseases has gained importance on recent years. In this study, it was designed a plant metabolomic approach which transfers all the recent data processing strategies of untargeted metabolomics in clinical applications to the present study. Q-TOF LC/MS-based analysis of the extracts (70% ethanol, hexane, and chloroform) for both seed and flowers was performed using a C18 column (Agilent Zorbax 1.8 µM, 100 × 2.1 mm). Differences were observed in seed and fruit extracts and these differences were visualized using principal component analysis (PCA) plots. The total number and intersections of the peaks in the extracts were visualized using peak count comparison graph. Based on the experimental results, the number of the detected peaks for seeds was higher than the ones for the flowers for all solvent systems to extract the samples.
Muhammad Umer Farooq;Mustafa Latif;Waseemullah;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
v.23
no.9
/
pp.1-7
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
Muhammad Umer Farooq;Mustafa Latif;Waseem;Mirza Adnan Baig;Muhammad Ali Akhtar;Nuzhat Sana
International Journal of Computer Science & Network Security
/
v.23
no.8
/
pp.210-216
/
2023
Demand prediction is an essential component of any business or supply chain. Large retailers need to keep track of tens of millions of items flows each day to ensure smooth operations and strong margins. The demand prediction is in the epicenter of this planning tornado. For business processes in retail companies that deal with a variety of products with short shelf life and foodstuffs, forecast accuracy is of the utmost importance due to the shifting demand pattern, which is impacted by an environment of dynamic and fast response. All sectors strive to produce the ideal quantity of goods at the ideal time, but for retailers, this issue is especially crucial as they also need to effectively manage perishable inventories. In light of this, this research aims to show how Machine Learning approaches can help with demand forecasting in retail and future sales predictions. This will be done in two steps. One by using historic data and another by using open data of weather conditions, fuel, Consumer Price Index (CPI), holidays, any specific events in that area etc. Several machine learning algorithms were applied and compared using the r-squared and mean absolute percentage error (MAPE) assessment metrics. The suggested method improves the effectiveness and quality of feature selection while using a small number of well-chosen features to increase demand prediction accuracy. The model is tested with a one-year weekly dataset after being trained with a two-year weekly dataset. The results show that the suggested expanded feature selection approach provides a very good MAPE range, a very respectable and encouraging value for anticipating retail demand in retail systems.
A bearing is a mechanical component that transmits rotation and supports loads. According to the type of rotating mechanism, bearings are categorized into ball bearings and tapered roller bearings. Tapered roller bearings have higher load-bearing capabilities than ball bearings. They are used in applications where high loads need to be supported, such as wheel bearings for commercial vehicles and trucks, aircraft and high-speed trains, and heavy-duty spindles for heavy machinery. In recent times, the demand for reducing the driving friction torque in automobiles has been increasing owing to the CO2 emission regulations and fuel efficiency requirements. Accordingly, the research on the driving friction torque of bearings has become more essential. Researchers have conducted various studies on the lubrication, friction, and contact in tapered roller bearings. Although researchers have conducted numerous studies on the friction in the lips and on roller misalignment and skew, studies considering the influence of roller shape, specifically roller shape errors including lips, are few. This study investigates the driving friction torque of tapered roller bearings considering roller geometric uncertainties. Initially, the study calculates the driving friction torque of tapered roller bearings when subjected to axial loads and compares it with experimental results. Additionally, it performs Monte Carlo simulations to evaluate the influence of roller geometric uncertainties (i.e., the effects of roller geometric deviations) on the driving friction torque of the bearings. It then analyzes the results of these simulations.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.1
/
pp.31-48
/
2024
The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.
Due to global CO2 emission reductions and fuel efficiency regulations, the trend toward transitioning from internal combustion engine vehicles to electric vehicles (EVs) has accelerated. Consequently, the problem of EV failures has become a focal point of active research. The parasitic capacitance generated during motor-shaft rotation induces voltage that deteriorates the raceway and ball surfaces of bearings, causing electrical damage in EVs. Despite numerous attempts to address this issue, most studies have been conducted under high viscosity lubricant and low load conditions. However, due to factors such as high-speed operation, rapid acceleration and deceleration, motor heating, and motor system-decelerator integration, current EV applications have shown diminished stability in lubrication films of motor bearings, thereby leveraging the investigation to address the risk of electrical damage. This study investigates the electrical damage to rolling bearing elements in EV motor drive systems. The experimental analysis focuses on the effects of electric currents and operational loads on bearing integrity. A test rig is designed to generate high-rate voltage specific to a motor system's parasitic capacitance, and bearing samples are exposed to these currents for specified durations. Component evaluation involves visual inspections and vibration measurements. In addition, a predictive model for electrical failure is developed based on accumulated data, which demonstrates the ability to predict the likelihood of electrical failure relative to the duration and intensity of current exposure. This in turn reduces uncertainties in practical applications regarding electrical erosion modes.
Journal of Korean Society for Atmospheric Environment
/
v.32
no.5
/
pp.501-512
/
2016
The study evaluated methods to measure condensable fine particles in flue gases and measured particulate matter by fuel and material to get precise concentrations and quantities. As a result of the method evaluation, it is required to improve test methods for measuring Condensable Particulate Matter (CPM) emitted after the conventional Filterable Particulate Matter (FPM) measurement process. Relative Standard Deviation (RSD) based on the evaluated analysis process showed that RSD percentages of FPM and CPM were around 27.0~139.5%. As errors in the process of CPM measurement and analysis can be caused while separating and dehydrating organic and inorganic materials from condensed liquid samples, transporting samples, and titrating ammonium hydroxide in the sample, it is required to comply with the exact test procedures. As for characteristics of FPM and CPM concentrations, CPM had about 1.6~63 times higher concentrations than FPM, and CPM caused huge increase in PM mass concentrations. Also, emission concentrations and quantities varied according to the characteristics of each fuel, the size of emitting facilities, operational conditions of emitters, etc. PM in the flue gases mostly consisted of CPM (61~99%), and the result of organic/inorganic component analysis revealed that organic dusts accounted for 30~88%. High-efficiency prevention facilities also had high concentrations of CPM due to large amounts of $NO_x$, and the more fuels, the more inorganic dusts. As a result of comparison between emission coefficients by fuel and the EPA AP-42, FPM had lower result values compared to that in the US materials, and CPM had higher values than FPM. For the emission coefficients of the total PM (FPM+CPM) by industry, that of thermal power stations (bituminous coal) was 71.64 g/ton, and cement manufacturing facility (blended fuels) 18.90 g/ton. In order to estimate emission quantities and coefficients proper to the circumstances of air pollutant-emitting facilities in Korea, measurement data need to be calculated in stages by facility condition according to the CPM measurement method in the study. About 80% of PM in flue gases are CPM, and a half of which are organic dusts that are mostly unknown yet. For effective management and control of PM in flue gases, it is necessary to identify the current conditions through quantitative and qualitative analysis of harmful organic substances, and have more interest in and conduct studies on unknown materials' measurements and behaviors.
Kim, Hansol;Lee, Jaewook;Lee, Soobin;Han, Jeehoon;Lee, In-Beum
Korean Chemical Engineering Research
/
v.53
no.1
/
pp.31-38
/
2015
At present, carbon dioxide ($CO_2$) emission, which causes global warming, is a major issue all over the world. To reduce $CO_2$ emission directly, commercial deployment of $CO_2$ separation processes has been attempted in industrial plants, such as power plant, oil refinery and steelmaking plant. Besides, several studies have been done on indirect reduction of $CO_2$ emission from recycle of reducing gas (carbon monoxide or hydrogen containing gas) in the plants. Unlike many competing gas separation technologies, pressure swing adsorption (PSA) and membrane filtration are commercially used together or individually to separate a single component from the gas mixture. However, there are few studies on operation of sequential separation process of multi-component gas which has more than two target gas products. In this paper, process simulation model is first developed for two available configurations: $CO_2$ PSA-CO PSA-$H_2$ PSA and $CO_2$ PSA-CO PSA-$H_2$ membrane. Operation optimization and economic evaluation of the processes are also performed. As a result, feed gas contains about 14% of $H_2$ should be used as fuel than separating $H_2$, and $CO_2$ separation should be separated earlier than CO separation when feed gas contains about 30% of $CO_2$ and CO. The simulation results can help us to find an optimal process configuration and operation condition for separation of multicomponent gas with $CO_2$, CO, $H_2$ and other gases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.